1,650 research outputs found

    Deformations of coisotropic submanifolds for fibrewise entire Poisson structures

    Get PDF
    We show that deformations of a coisotropic submanifold inside a fibrewise entire Poisson manifold are controlled by the L∞L_\infty-algebra introduced by Oh-Park (for symplectic manifolds) and Cattaneo-Felder. In the symplectic case, we recover results previously obtained by Oh-Park. Moreover we consider the extended deformation problem and prove its obstructedness

    Structure of the space of folding protein sequences defined by large language models

    Full text link
    Proteins populate a manifold in the high-dimensional sequence space whose geometrical structure guides their natural evolution. Leveraging recently-developed structure prediction tools based on transformer models, we first examine the protein sequence landscape as defined by the folding score function. This landscape shares characteristics with optimization challenges encountered in machine learning and constraint satisfaction problems. Our analysis reveals that natural proteins predominantly reside in wide, flat minima within this energy landscape. To investigate further, we employ statistical mechanics algorithms specifically designed to explore regions with high local entropy in relatively flat landscapes. Our findings indicate that these specialized algorithms can identify valleys with higher entropy compared to those found using traditional methods such as Monte Carlo Markov Chains. In a proof-of-concept case, we find that these highly entropic minima exhibit significant similarities to natural sequences, especially in critical key sites and local entropy. Additionally, evaluations through Molecular Dynamics suggests that the stability of these sequences closely resembles that of natural proteins. Our tool combines advancements in machine learning and statistical physics, providing new insights into the exploration of sequence landscapes where wide, flat minima coexist alongside a majority of narrower minima

    Industrial sprawl and residential housing. Exploring the interplay between local development and land-use change in the Valencian Community, Spain

    Get PDF
    Urbanization in Mediterranean Europe has occurred in recent decades with expansion of residential, commercial and industrial settlements into rural landscapes outside the traditional metropolitan boundaries. Industrial expansion in peri-urban contexts was particularly intense in Southern Europe. Based on these premises, this work investigates residential and industrial settlement dynamics in the Valencian Community, Spain, between 2005 and 2015, with the aim to clarify the role of industrial expansion in total urban growth in a paradigmatic Mediterranean region. Since the early 1990s, the Valencian industrial sector developed in correspondence with already established industrial nodes, altering the surrounding rural landscape. Six variables (urban hierarchy, discontinuous settlements, pristine land under urban expansion, isolated industrial settlements, within- and out-of-plan industrial areas) were considered with the aim at exploring land-use change. Empirical results indicate a role of industrial development in pushing urban sprawl in coastal Valencia. A reflection on the distinctive evolution of residential and industrial settlements is essential for designing new planning measures for sustainable land management and containment of urban sprawl in Southern Europe. A comparative analysis of different alternatives of urban development based on quantitative assessment of land-use change provides guidelines for local development and ecological sustainability

    Pancreatic cancer-derived S-100A8 N-terminal peptide: a diabetes cause?

    Get PDF
    BACKGROUND: Our aim was to identify the pancreatic cancer diabetogenic peptide. METHODS: Pancreatic tumor samples from patients with (n=15) or without (n=7) diabetes were compared with 6 non-neoplastic pancreas samples using SDS-PAGE. RESULTS: A band measuring approximately 1500 Da was detected in tumors from diabetics, but not in neoplastic samples from non-diabetics or samples from non-neoplastic subjects. Sequence analysis revealed a 14 amino acid peptide (1589.88 Da), corresponding to the N-terminal of the S100A8. At 50 nmol/L and 2 mmol/L, this peptide significantly reduced glucose consumption and lactate production by cultured C(2)C(12) myoblasts. The 14 amino acid peptide caused a lack of myotubular differentiation, the presence of polynucleated cells and caspase-3 activation. CONCLUSIONS: The 14 amino acid peptide from S100A8 impairs the catabolism of glucose by myoblasts in vitro and may cause hyperglycemia in vivo. Its identification in biological fluids might be helpful in diagnosing pancreatic cancer in patients with recent onset diabetes mellitus

    Pancreatic cancer-associated diabetes mellitus: an open field for proteomic applications.

    Get PDF
    Background: Diabetes mellitus is associated with pancreatic cancer in more than 80% of the cases. Clinical, epidemiological, and experimental data indicate that pancreatic cancer causes diabetes mellitus by releasing soluble mediators which interfere with both beta-cell function and liver and muscle glucose metabolism. Methods: We analysed, by matrix-assisted laser desorption ionization time of flight (MALDI-TOF), a series of pancreatic cancer cell lines conditioned media, pancreatic cancer patients' peripheral and portal sera, comparing them with controls and chronic pancreatitis patients' sera. Results: MALDI-TOF analysis of pancreatic cancer cells conditioned media and patients' sera indicated a low molecular weight peptide to be the putative pancreatic cancer-associated diabetogenic factor. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of tumor samples from diabetic and non-diabetic patients revealed the presence of a 1500 Da peptide only in diabetic patients. The amino acid sequence of this peptide corresponded to the N-terminal of an S-100 calcium binding protein, which was therefore suggested to be the pancreatic cancer-associated diabetogenic factor. Conclusions: We identified a tumor-derived peptide of 14 amino acids sharing a 100% homology with an S-100 calcium binding protein, which is probably the pancreatic cancer-associated diabetogenic facto

    Investigation on the antimicrobial properties of cerium-doped bioactive glasses

    Get PDF
    Cerium-doped bioactive glasses (Ce-BGs) are implant materials that present high biocompatibility, modulate the levels of reactive oxygen species, and exert antimicrobial activity. The potential of BGs, 45S5, and K50S derived glasses doped with CeO2 (1.2, 3.6, and 5.3 mol%) to inhibit the growth of pathogen microbes was thoroughly investigated according to the ISO 22196:2011 method properly adapted. A significant reduction of the E. coli charge was detected in all glasses, including the BGs without cerium. The evolution of pH of the medium not inoculated following the immersion of the Ce-BGs was monitored. The presence of cerium did not affect markedly the pH trend, which increased rapidly for both compositions. The change of pH was strongly mitigated by the presence of 200 mM phosphate buffer pH 7.0 (PB) in the medium. In media buffered by PB, the growth of E. coli, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, and C. albicans was not affected by the presence of BGs doped or not with cerium, suggesting that the antibacterial activity of Ce-BGs is linked to the increase of environmental pH rather than to specific ion effects. However, Ce-BGs resulted promising biomaterials that associate low toxicity to normal cells to a considerable antimicrobial effect, albeit the latter is not directly associated with the presence of cerium

    Potential of wickerhamomyces anomalus in glycerol valorization

    Get PDF
    Five-carbons polyalcohols, such as xylitol and arabitol, and microbial oils are important targets for biotechnological industries. Polyalcohols can find application as low-calories sweeteners and as building block in the synthesis of valuable compounds, while lipids are interesting for both biofuel and food industry. The osmophilic yeast Wickerhamomyces anomalus WC 1501 was preliminary known to produce arabitol from glycerol. Production kinetics were investigated in this study. Production was not growth-associated and occurred during a nitrogen-limited stationary phase, in presence of an excess of carbon source. Typical bioreactor batch cultures, carried out with 160 g/L glycerol, yielded 16.0 g/L arabitol in 160 h. A fed-batch process was developed, in which growth is carried out batchwise in a balanced medium containing 20 g/L glycerol, and arabitol production is induced at the entrance into the stationary phase with a pulse of concentrated glycerol to provide the remaining 140 g/L carbon source. At the end of the process 18.0 g/L arabitol were generated. Under these conditions, the yeast also accumulated intracellular triacylglycerols, with fatty acids of 16-18 carbons bearing 0 to 2 unsaturations, reaching up the 23% of biomass dry weight. Therefore, W. anomalus WC 1501 is a good candidate for the development of a fermentative process yielding arabitol and has potential also as oleaginous yeast for producing lipids, further improving the interest in this strain for glycerol biorefinery. The utilization of a fed-batch process allows to carry out distinct growth and production phases and thus allows the optimization of both phases separately, in order to achieve the highest concentration of catalytic biomass during growth and the maximum efficiency during production. This strain deserves further investigation to better exploit its biotechnological potential in the valorization of glycerol

    Spatial and temporal characterization of a Bessel beam produced using a conical mirror

    Full text link
    We experimentally analyze a Bessel beam produced with a conical mirror, paying particular attention to its superluminal and diffraction-free properties. We spatially characterized the beam in the radial and on-axis dimensions, and verified that the central peak does not spread over a propagation distance of 73 cm. In addition, we measured the superluminal phase and group velocities of the beam in free space. Both spatial and temporal measurements show good agreement with the theoretical predictions.Comment: 5 pages, 6 figure

    Optimization of the appearance quality in CO2 processed ready-to-eat carrots through image analysis

    Get PDF
    A high-pressure CO2 process applied to ready-to-eat food products guarantees an increase of both their microbial safety and shelf-life. However, the treatment often produces unwanted changes in the visual appearance of products depending on the adopted process conditions. Accordingly, the alteration of the visual appearance influences consumers’ perception and acceptability. This study aims at identifying the optimal treatment conditions in terms of visual appearance by using an artificial vision system. The developed methodology was applied to fresh-cut carrots (Daucus carota) as the test product. The results showed that carrots packaged in 100% CO2 and subsequently treated at 6 MPa and 40◦C for 15 min maintained an appearance similar to the fresh product for up to 7 days of storage at 4◦C. Mild appearance changes were identified at 7 and 14 days of storage in the processed products. Microbiological analysis performed on the optimal treatment condition showed the microbiological stability of the samples up to 14 days of storage at 4◦C. The artificial vision system, successfully applied to the CO2 pasteurization process, can easily be applied to any food process involving changes in the appearance of any food product
    • …
    corecore