74 research outputs found

    Novel framework to improve water management adaptation under climate change scenarios

    Get PDF
    The impacts of projected climate change on freshwater resources are increasingly promoting the adoption of different approaches to water management, due to the likely occurrence of reduced water supplies and early-stage drought conditions in many river basins across Southern Europe. The traditional strategy to cope with water scarcity has largely relied on hard-path measures aimed at expanding the existing supply capacity by great investments in centralized, large-scale infrastructures such as dams and distribution systems. This approach is, however, becoming more and more unsustainable, giving way to effective soft-path solutions based on improved predictive capacities, optimal decision making and drought risk management. Given the need to ensure a more sustainable and efficient water management under current and projected scenarios, the study presents a novel decision-analytic framework to assist decision-makers in designing and assessing alternative soft-path measures in order to increase the adaptation of the system to a changing climate. The framework is being developed within the SO-WATCH project and it will be demonstrated on the Lake Como river basin (Italy) by implementing a four-stage procedure as follows: i) calibration and validation of a physical model comprising three sub-models simulating, respectively, the upstream catchment processes (TOPKAPI-ETH), the lake dynamics and water releases (DISTRILAKE) and the water balance in the irrigation system downstream the lake (IDRAGRA), ii) coupling of the hydrological model with a multi-agent systems model developed to reproduce human decisions and their effects on the system dynamics (e.g. dam operations and farmers practices), iii) definition and impact assessment of hydro-climatic and socio-technoeconomic scenarios supported by the calculation of drought indicators and iv) design and evaluation of soft-path measures to improve the efficiency of the water system. Preliminary results based on different climate change projections for the time period 2096-2100 (ensemble of different Global Climate Models, Regional Climate Models and Radiative Concentration Pathways as of the IPCC Fifth Assessment Report) reveal a general reduction of the lake inflows in spring and summer, with an increasing frequency of drought conditions under the business-as-usual scenario. In order to design the most effective soft-path measures, a newly developed index, the Transpiration Deficit Index (D-TDI), will be applied along with other commonly used indexes. D-TDI takes into account the transpiration deficit (i.e. difference between potential and actual transpiration) computed by the IDRAGRA model on a daily basis and cumulated over a selected time span and allows an effective identification of drought prone areas

    The effects of Δ9-tetrahydrocannabinol on the dopamine system

    Get PDF
    Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, is a pressing concern to global mental health. Patterns of use are changing drastically due to legalisation, availability of synthetic analogues (‘spice’), cannavaping and aggrandizements in the purported therapeutic effects of cannabis. Many of THC’s reinforcing effects are mediated by the dopamine system. Due to complex cannabinoid-dopamine interactions there is conflicting evidence from human and animal research fields. Acute THC causes increased dopamine release and neuron activity, whilst long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of the drug

    Characterization of behavioral, signaling and cytokine alterations in a rat neurodevelopmental model for schizophrenia, and their reversal by the 5-HT₆ receptor antagonist SB-399885

    Get PDF
    Post-weaning social isolation of rats produces neuroanatomical, neurochemical and behavioral alterations resembling some core features of schizophrenia. This study examined the ability of the 5-HT₆ receptor antagonist SB-399885 to reverse isolation-induced cognitive deficits, then investigated alterations in hippocampal cell proliferation and hippocampal and frontal cortical expression of selected intracellular signaling molecules and cytokines. Male Lister-hooded rats (weaned on post-natal day 21-24 and housed individually or in groups of 3-4) received six i.p. injections of vehicle (1% Tween 80, 1 mL/kg) or SB-399885 (5 or 10 mg/kg) over a two week period starting 40 days post-weaning, on the days that locomotor activity, novel object discrimination (NOD), pre-pulse inhibition of acoustic startle and acquisition, retention and extinction of a conditioned freezing response (CFR) were assessed. Tissue was collected 24 h after the final injection for immunohistochemistry, reverse-phase protein microarray and western blotting. Isolation rearing impaired NOD and cue-mediated CFR, decreased cell proliferation within the dentate gyrus, and elevated hippocampal TNFα levels and Cdc42 expression. SB-399885 reversed the NOD deficit and partially normalized CFR and cell proliferation. These effects were accompanied by altered expression of several members of the c-Jun N-terminal Kinase (JNK) and p38 MAPK signaling pathways (including TAK1, MKK4 and STAT3). Although JNK and p38 themselves were unaltered at this time point hippocampal TAK1 expression and phosphorylation correlated with visual recognition memory in the NOD task. Continued use of this neurodevelopmental model could further elucidate the neurobiology of schizophrenia and aid assessment of novel therapies for drug-resistant cognitive symptoms

    Dos(e)Age: Role of Dose and Age in the Long-Term Effect of Cannabinoids on Cognition

    No full text
    Cannabis is still the most widely used illicit drug around the world. While its use has always been prevalent among adolescents, recent evidence suggests that its consumption is also increasing among other population groups, such as pregnant women and aged people. Given the known impact of cannabis on brain development and behavior, it is important to dissect the possible long-term impact of its use across different age groups, especially on measures of cognitive performance. Animal models of cannabinoid exposure have represented a fundamental tool to characterize the long-lasting consequences of cannabinoids on cognitive performance and helped to identify possible factors that could modulate cannabinoids effects in the long term, such as the age of exposure and doses administered. This scoping review was systematically conducted using PubMed and includes papers published from 2015 to December 2021 that examined the effects of cannabinoids, either natural or synthetic, on cognitive performance in animal models where exposure occurred in the prenatal period, during adolescence, or in older animals. Overall, available data clearly point to a crucial role of age in determining the long-term effect of cannabinoid on cognition, highlighting possible detrimental consequences during brain development (prenatal and adolescent exposure) and beneficial outcomes in old age. In contrast, despite the recent advances in the field, it appears difficult to clearly establish a possible role of dosage in the effects of cannabinoids on cognition, especially when the adolescent period is taken into account

    Adolescent exposure to cannabis as a risk factor for psychiatric disorders

    No full text
    Adolescence represents a critical period for brain development and the endocannabinoid system plays a crucial role in the regulation of neuronal refinement during this period. Cannabis is the most consumed drug among adolescent people and its heavy use may affect maturational refinement by disrupting the regulatory role of the endocannabinoid system. In animals, adolescent cannabinoid exposure has been reported to cause long-term impairment in specific components of learning and memory and to differentially affect emotional reactivity with milder effects on anxiety behaviour and more pronounced effects on depression-like behaviour. Moreover, adolescent exposure to cannabinoids might represent a risk factor for developing psychotic-like symptoms at adulthood. Also epidemiological studies suggest that heavy adolescent cannabis use may increase the risk of cognitive abnormalities, psychotic illness, mood disorders and other illicit substance use later in life. In conclusion, the available data point to the hypothesis that heavy cannabis use in adolescence could increase the risk of developing psychiatric disorders, especially in people who already have a vulnerability to develop a psychiatric syndrome. Only few papers have investigated the neurobiological substrates of this vulnerability, thus further studies are needed to clarify the molecular mechanisms underlying the effect of cannabis on the adolescent brain

    Endocannabinoids and Mental Disorders.

    No full text
    Preclinical and clinical data fully support the involvement of the endocannabinoid system in the etiopathogenesis of several mental diseases. In this review we will briefly summarize the most common alterations in the endocannabinoid system, in terms of cannabinoid receptors and endocannabinoid levels, present in mood disorders (anxiety, posttraumatic stress disorder, depression, bipolar disorder, and suicidality) as well as psychosis (schizophrenia) and autism. The arising picture for each pathology is not always straightforward; however, both animal and human studies seem to suggest that pharmacological modulation of this system might represent a novel approach for treatment
    • …
    corecore