656 research outputs found

    Meanfield treatment of Bragg scattering from a Bose-Einstein condensate

    Full text link
    A unified semiclassical treatment of Bragg scattering from Bose-Einstein condensates is presented. The formalism is based on the Gross-Pitaevskii equation driven by classical light fields far detuned from atomic resonance. An approximate analytic solution is obtained and provides quantitative understanding of the atomic momentum state oscillations, as well as a simple expression for the momentum linewidth of the scattering process. The validity regime of the analytic solution is derived, and tested by three dimensional cylindrically symmetric numerical simulations.Comment: 21 pages, 10 figures. Minor changes made to documen

    Consequence of superfluidity on the expansion of a rotating Bose-Einstein condensate

    Get PDF
    We study the time evolution of a rotating condensate, that expands after being suddenly released from the confining trap, by solving the hydrodynamic equations of irrotational superfluids. For slow initial rotation speeds, Ω0\Omega_{0}, we find that the condensate's angular velocity increases rapidly to a maximum value and this is accompanied by a minimum in the deformation of the condensate in the rotating plane. During the expansion the sample makes a global rotation of approximately π/2\pi/2, where the exact value depends on Ω0\Omega_{0}. This minimum deformation can serve as an easily detectable signature of superfluidity in a Bose--Einstein condensate.Comment: 4 pages, 3 figures, submitted to PR

    Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis

    Get PDF
    In order to decrease the peri-implant bone loss during the life-time of the implant, oral use of anti-osteoporosis drugs (like bisphosphonates) has been suggested. In this study, bone remodeling parameters identified from clinical trials of alendronate were used to simulate the effect of those drugs used after total hip arthroplasty on the peri-implant bone density. Results of the simulation show that the oral administrated drugs increase bone density around the implant and decreases, at the same time, the micromovements between the implant and the surrounding bone tissue. Incorporation of drug effect in numerical studies of bone remodeling is a promising tool especially to predetermine safe bisphosphonate doses that could be used with orthopedic implants

    Direct observation of the phonon energy in a Bose-Einstein condensate by tomographic imaging

    Full text link
    The momentum and energy of phonons in a Bose-Einstein condensate are measured directly from a time-of-flight image by computerized tomography. We find that the same atoms that carry the momentum of the excitation also carry the excitation energy. The measured energy is in agreement with the Bogoliubov spectrum. Hydrodynamic simulations are performed which confirm our observation.Comment: Letter, 5 figure

    How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis

    Get PDF
    A numerical model of the medial open wedge tibial osteotomy based on the finite element method was developed. Two plate positions were tested numerically. In a configuration, (a), the plate was fixed in a medial position and (b) in an anteromedial position. The simulation took into account soft tissues preload, muscular tonus and maximal gait load.The maximal stresses observed in the four structural elements (bone, plate, wedge, screws) of an osteotomy with plate in medial position were substantially higher (1.13-2.8 times more) than those observed in osteotomy with an anteromedial plate configuration. An important increase (1.71 times more) of the relative micromotions between the wedge and the bone was also observed. In order to avoid formation of fibrous tissue at the bone wedge interface, the osteotomy should be loaded under 18.8% (approximately 50 kg) of the normal gait load until the osteotomy interfaces union is achieved

    Stable and unstable vortices in multicomponent Bose-Einstein condensates

    Full text link
    We study the stability and dynamics of vortices in two-species condensates as prepared in the recent JILA experiment (M. R. Andrews {\em et al.}, Phys. Rev. Lett. 83 (1999) 2498). We find that of the two available configurations, in which one specie has vorticity m=1m=1 and the other one has m=0m=0, only one is linearly stable, which agrees with the experimental results. However, it is found that in the unstable case the vortex is not destroyed by the instability, but may be transfered from one specie to the other or display complex spatiotemporal dynamics.Comment: 4 EPS figures, now features a three-dimensional stud

    Collective oscillations of a classical gas confined in harmonic traps

    Full text link
    Starting from the Boltzmann equation we calculate the frequency and the damping of the monopole and quadrupole oscillations of a classical gas confined in an harmonic potential. The collisional term is treated in the relaxation time approximation and a gaussian ansatz is used for its evaluation. Our approach provides an explicit description of the transition between the hydrodynamic and collisionless regimes in both spherical and deformed traps. The predictions are compared with the results of a numerical simulation.Comment: 6 pages, revtex, 2 figures include

    Off-axis vortices in trapped Bose condensed gases: angular momentum and frequency splitting

    Get PDF
    We consider non centered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity-field of the vortices, we calculate to first order the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions which would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.Comment: 11 pages, LaTeX, 3 figures. Perturbative approach adde

    Excitations of a Bose-Einstein condensate in a one-dimensional optical lattice

    Full text link
    We investigate the low-lying excitations of a stack of weakly-coupled two-dimensional Bose-Einstein condensates that is formed by a one-dimensional optical lattice. In particular, we calculate the dispersion relations of the monopole and quadrupole modes, both for the ground state as well as for the case in which the system contains a vortex along the direction of the lasers creating the optical lattice. Our variational approach enables us to determine analytically the dispersion relations for an arbitrary number of atoms in every two-dimensional condensate and for an arbitrary momentum. We also discuss the feasibility of experimentally observing our results.Comment: 16 pages, 5 figures, minor changes,accepted for publication in Phys. Rev.
    • 

    corecore