19 research outputs found

    A globally applicable PCR-based detection and discrimination of BK and JC polyomaviruses

    Get PDF
    BKV and JCV belong to the Polyomaviridae family and are opportunistic agents associated with complications in immunocompromised individuals. Although a single screening assay for both viruses would be convenient, the diversity of BKV and JCV serotypes and genotypes is a methodological challenge. In this paper, we developed a PCR method able to detect and segregate BKV and JCV, despite these genetic discrepancies. A duplex semi-nested PCR (duplex snPCR) was designed to target a conserved region (639nt-1516nt) within the VP2 gene. In the first PCR, a primer set common to all BKV and JCV serotypes/ genotypes was used, followed by a semi-nested PCR with internal primers for BKV and JCV segregation. The limit of detection of the duplex snPCR was as low as 10 copies of BKV or JCV plasmids/µL. Specific products were observed when JCV and BKV plasmids were mixed in the same reaction. In field sample testing, the duplex snPCR detected and distinguished both viruses in different biological samples. Results were confirmed by Sanger’s sequencing. The geographical complexity of BKV and JCV serotypes and genotypes imposes limits to a simple and universal method that could detect each virus. However, we describe here a sensitive and reliable PCR technique for BKV and JCV diagnosis that overcomes these limitations and could be universally applied

    Genetic polymorphism of the serine rich antigen N-terminal region in Plasmodium falciparum field isolates from Brazil

    Full text link
    In this work we investigated the frequency of polymorphism in exon II of the gene encoding most of the amino-terminal region of the serine rich antigen (SERA) in Plasmodium falciparum field samples. The blood samples were colleted from P. falciparum infected individuals in three areas of the Brazilian Amazon. Two fragments have been characterized by polymerase chain reaction: one of 175 bp corresponding to the repeat region with 5 octamer units and one other of 199 bp related to the 6 repeat octamer units of SERA protein. The 199 bp fragment was the predominant one in all the studied areas. The higher frequency of this fragment has not been described before and could be explained by an immunological selection of the plasmodial population in the infected individuals under study. Since repeat motifs in the amino-terminal region of SERA contain epitopes recognized by parasite-inhibitor antibodies, data reported here suggest that the analysis of the polymorphism of P. falciparum isolates in different geographical areas is a preliminary stage before the final drawing of an universal vaccine against malaria can be reached

    Frequency of GJB2 mutations in patients with nonsyndromic hearing loss from an ethnically characterized Brazilian population

    No full text
    Introduction: In different parts of the world, mutations in the GJB2 gene are associated with nonsyndromic hearing loss, and the homozygous 35delG mutation (p.Gly12Valfs*2) is a major cause of hereditary hearing loss. However, the 35delG mutation is not equally prevalent across ethnicities, making it important to study other mutations, especially in multiethnic countries such as Brazil. Objective: This study aimed to identify different mutations in the GJB2 gene in patients with severe to profound nonsyndromic sensorineural hearing loss of putative genetic origin, and who were negative or heterozygote for the 35delG mutation. Methods: Observational study that analyzed 100 ethnically characterized Brazilian patients with nonsyndromic severe to profound sensorineural hearing loss, who were negative or heterozygote for the 35delG mutation. GJB2 mutations were detected by DNA-based sequencing in this population. Participants’ ethnicities were identified as Latin European, Non-Latin European, Jewish, Native, Turkish, Afro-American, Asian and Others. Results: Sixteen participants were heterozygote for the 35delG mutation; 14 participants, including three 35delG heterozygote's, had nine different alterations in the GJB2 gene. One variant, p.Ser199Glnfs*9, detected in two participants, was previously unreported. Three variants were pathogenic (p.Trp172*, p.Val167Met, and p.Arg75Trp), two were non-pathogenic (p.Val27Ile and p.Ile196Thr), and three variants were indeterminate (p.Met34Thr, p.Arg127Leu, and p.Lys168Arg). Three cases of compound heterozygosity were detected: p.[(Gly12Valfs*2)];[(Trp172*)], p.[(Gly12Valfs*2)](;)[(Met34Thr)], and p.[(Gly12Valfs*2)(;)[(Ser199Glnfs*9)]). Conclusion: This study detected previously unclassified variants and one case of previously unreported compound heterozygosity. Resumo: Introdução: Em diferentes partes do mundo, mutações do gene GJB2 estão associadas a perda auditiva não sindrômica e a mutação homozigótica 35delG (p.Gly12Valfs*2) é uma das principais causas de perda auditiva hereditária. No entanto, a mutação 35delG não é igualmente prevalente em todas as etnias, faz com que seja importante estudar outras mutações, especialmente em países multiétnicos, como o Brasil. Objetivo: Identificar diferentes mutações no gene GJB2 em pacientes com perda auditiva neurossensorial grave ou profunda não sindrômica de origem genética putativa e negativos ou heterozigotos para a mutação 35delG. Método: Estudo observacional que analisou 100 pacientes brasileiros caracterizados etnicamente, com perda auditiva neurossensorial grave ou profunda não sindrômica, negativos ou heterozigotos para a mutação 35delG. As mutações de GJB2 foram detectadas por sequenciamento baseado no DNA nessa população. As etnias dos participantes foram identificadas como latino-europeia, não latino-europeia, judaica, nativa, turca, negra, asiática e outras. Resultados: Dezesseis participantes eram heterozigotos para a mutação 35delG e 14, incluindo três heterozigotos para 35delG, apresentaram nove alterações no gene GJB2. Uma variante, p.Ser199Glnfs*9, detectada em dois participantes, não havia sido relatada anteriormente. Três variantes eram patogênicas (p.Trp172*, p.Val167Met, e p.Arg75Trp), duas não patogênicas (p.Val27Ile e p.Ile196Thr) e três indeterminadas (p.Met34Thr, p.Arg127Leu, e p.Lys168Arg). Três casos de heterozigosidade composta foram detectados: p.[(Gly12Valfs*2)];[(Trp172*)], p.[(Gly12Valfs*2)](;)[(Met34Thr)], e p.[(Gly12Valfs*2)(;)[(Ser199Glnfs*9)]). Conclusão: Este estudo detectou variantes não classificadas anteriormente e um caso de heterozigosidade composta ainda não relatada. Keywords: Hearing loss, Deafness, Genetics, Palavras-chave: Perda de audição, Surdez, Genétic

    Prevalence of resistance-associated mutations in Human Immunodeficiency Virus type 1-positive individuals failing HAART in Rio de Janeiro, Brazil

    No full text
    We investigated the occurrence of HIV-1 antiretroviral resistance in individuals failing to respond to highly active antiretroviral therapy (HAART) attended by RENAGENO from 2001-2004. One hundred and seventeen patients were selected for this study; their plasma viral RNA was extracted and the PR and RT genes sequenced to examine subtype, genetic polymorphisms and mutations associated with resistance to antiretroviral drugs. HIV-1 sequence analysis showed that 86/100 (86%) were infected with subtype B, 7/100 (7%) with subtype F and 7/100 (7%) with RT/PR hybrid forms (2 D/B, 2 F/B, 2 B/F and 1 D/F). In 14 (12%) of the samples, the subtype was not determined. The prevalence of resistance mutations was high (93.1%), mainly in the RT gene. The most prevalent resistance mutations were: M184V (60.7%), T215Y (49.6%) and M41L (46.7%) in the RT gene and L90M (19.6%), M46I (16.2%) and D30N (12.8%) in the PR gene. The frequency of resistance mutations tended to increase from the first to the second therapeutic scheme failure (p=0.079); but it stabilized after subsequent failures (p=0.875). Our finding of a high frequency of drug resistant HIV-1 samples supports the need for continuous genotypic monitoring of patients failing HAART

    Merozoite surface protein 2 allelic variation influences the specific antibody response during acute malaria in individuals from a Brazilian endemic area

    No full text
    The antibody response to Plasmodium falciparum parasites of naturally infected population is critical to elucidate the role of polymorphic alleles in malaria. Thus, we evaluated the impact of antigenic diversity of repetitive and family dimorphic domains of the merozoite surface protein 2 (MSP-2) on immune response of 96 individuals living in Peixoto de Azevedo (MT-Brazil), by ELISA using recombinant MSP-2 proteins. The majority of these individuals were carrying FC27-type infections. IgG antibody responses were predominantly directed to FC27 parasites and were correlated to the extension of polymorphism presented by each MSP-2 region. This finding demonstrated the impact of the genetic polymorphism on antibody response and therefore, its importance on malaria vaccine efficacy

    Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase of isolates from the Amazon region of Brazil

    No full text
    Since the late 1970s pyrimethamine-sulfadoxine (PS; FansidarTM Hoffman-LaRoche, Basel) has been used as first line therapy for uncomplicated malaria in the Amazon basin. Unfortunately, resistance has developed over the last ten years in many regions of the Amazon and PS is no longer recommended for use in Brazil. In vitro resistance to pyrimethamine and cycloguanil (the active metabolite of proguanil) is caused by specific point mutations in Plasmodium falciparum dihydrofolate reductase (DHFR), and in vitro resistance to sulfadoxine has been associated with mutations in dihydropteroate synthase (DHPS). In association with a proguanil-sulfamethoxazole clinical trial in Brazil, we performed a nested mutation-specific polymerase chain reaction to measure the prevalence of DHFR mutations at codons 50, 51, 59, 108 and 164 and DHPS mutations at codons 436, 437, 540, 581 and 613 at three sites in the Brazilian Amazon. Samples from two isolated towns showed a high degree of homogeneity, with the DHFR Arg-50/Ile-51/Asn-108 and DHPS Gly-437/Glu-540/Gly-581 mutant genotype accounting for all infections in Peixoto de Azevedo (n = 15) and 60% of infections in Apiacs (n = 10), State of Mato Grosso. The remaining infections in Apiacs differed from this predominant genotype only by the addition of the Bolivia repeat at codon 30 and the Leu-164 mutation in DHFR. By contrast, 17 samples from Porto Velho, capital city of the State of Rondnia, with much in- and out-migration, showed a wide variety of DHFR and DHPS genotypes

    Plasmodium falciparum malarial parasites from Brazil lack artemisinin resistance-associated mutations in the kelch13 gene

    No full text
    Abstract INTRODUCTION Mutations in the propeller domain of the Plasmodium falciparum kelch13 (k13) gene are associated with artemisinin resistance. METHODS: We developed a PCR protocol to sequence the pfk13 gene and determined its sequence in a batch of 50 samples collected from 2003 to 2016 in Brazil. RESULTS: We identified 1 K189T substitution located outside the propeller domain of the PfK13 protein in 36% of samples. CONCLUSIONS: Although the sample size is relatively small, these results suggest that P. falciparum artemisinin-resistant mutants do not exist in Brazil, thereby supporting the continuation of current treatment programs based on artemisinin-based combination therapy
    corecore