52 research outputs found

    Fibonacci anyons and charge density order in the 12/5 and 13/5 plateaus

    Get PDF
    The ν=12/5\nu=12/5 fractional quantum Hall plateau observed in GaAs wells is a suspect in the search for non-Abelian Fibonacci anyons. Using the infinite density matrix renormalization group, we find clear evidence that---in the absence of Landau level mixing---fillings ν=12/5\nu = 12/5 and ν=13/5\nu=13/5 are in the k=3k = 3 Read-Rezayi phase. The lowest energy charged excitation is a non-Abelian Fibonacci anyon which can be trapped by a one-body potential. We point out extremely close energetic competition between the Read-Rezayi phase and a charge-density ordered phase, which suggests that even small particle-hole symmetry breaking perturbations can explain the experimentally observed asymmetry between ν=12/5\nu = 12/5 and 13/513/5. Reducing the thickness of the quantum well drives a transition from the homogeneous Read-Rezayi phase to the charge-density ordered phase, providing a plausible explanation for the absence of a ν=12/5\nu=12/5 plateau in narrow GaAs wells

    Imaging Anyons with Scanning Tunneling Microscopy

    Get PDF
    Anyons are exotic quasiparticles with fractional charge that can emerge as fundamental excitations of strongly interacting topological quantum phases of matter. Unlike ordinary fermions and bosons, they may obey non-Abelian statistics—a property that would help realize fault-tolerant quantum computation. Non-Abelian anyons have long been predicted to occur in the fractional quantum Hall (FQH) phases that form in two-dimensional electron gases in the presence of a large magnetic field, such as the ν=5/2 FQH state. However, direct experimental evidence of anyons and tests that can distinguish between Abelian and non-Abelian quantum ground states with such excitations have remained elusive. Here, we propose a new experimental approach to directly visualize the structure of interacting electronic states of FQH states with the STM. Our theoretical calculations show how spectroscopy mapping with the STM near individual impurity defects can be used to image fractional statistics in FQH states, identifying unique signatures in such measurements that can distinguish different proposed ground states. The presence of locally trapped anyons should leave distinct signatures in STM spectroscopic maps, and enables a new approach to directly detect—and perhaps ultimately manipulate—these exotic quasiparticles

    Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect.

    Get PDF
    Spin-orbit coupling (SOC) is the key to realizing time-reversal-invariant topological phases of matter1,2. SOC was predicted by Kane and Mele3 to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene4-7 has precluded experimental observation in this material. Here we exploit a layer-selective proximity effect-achieved via a van der Waals contact with a semiconducting transition-metal dichalcogenide8-21-to engineer Kane-Mele SOC in ultra clean bilayer graphene. Using high-resolution capacitance measurements to probe the bulk electronic compressibility, we find that SOC leads to the formation of a distinct, incompressible, gapped phase at charge neutrality. The experimental data agree quantitatively with a simple theoretical model in which the new phase results from SOC-driven band inversion. In contrast to Kane-Mele SOC in monolayer graphene, the inverted phase is not expected to be a time-reversal-invariant topological insulator, despite being separated from conventional band insulators by electric-field-tuned phase transitions where crystal symmetry mandates that the bulk gap must close22. Our electrical transport measurements reveal that the inverted phase has a conductivity of approximately e2/h (where e is the electron charge and h Planck's constant), which is suppressed by exceptionally small in-plane magnetic fields. The high conductivity and anomalous magnetoresistance are consistent with theoretical models that predict helical edge states within the inverted phase that are protected from backscattering by an emergent spin symmetry that remains robust even for large Rashba SOC. Our results pave the way for proximity engineering of strong topological insulators as well as correlated quantum phases in the strong spin-orbit regime in graphene heterostructures

    Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet

    Get PDF
    The interaction between electrons in graphene under high magnetic fields drives the formation of a rich set of quantum Hall ferromagnetic (QHFM) phases with broken spin or valley symmetry. Visualizing atomic-scale electronic wave functions with scanning tunneling spectroscopy (STS), we resolved microscopic signatures of valley ordering in QHFM phases and spectral features of fractional quantum Hall phases of graphene. At charge neutrality, we observed a field-tuned continuous quantum phase transition from a valley-polarized state to an intervalley coherent state, with a Kekulé distortion of its electronic density. Mapping the valley texture extracted from STS measurements of the Kekulé phase, we could visualize valley skyrmion excitations localized near charged defects. Our techniques can be applied to examine valley-ordered phases and their topological excitations in a wide range of materials

    Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels

    Get PDF
    Interacting electrons in flat bands give rise to a variety of quantum phases. One fundamental aspect of such states is the ordering of the various flavours -such as spin or valley - that the electrons can undergo and the excitation spectrum of the broken symmetry states that they form. These properties cannot be probed directly with electrical transport measurements. The zeroth Landau level of monolayer graphene with four-fold spin-valley degeneracy is a model system for such investigations, but the nature of its broken symmetry states -particularly at partial fillings - is still not understood. Here we demonstrate a non-invasive spectroscopic technique with a scanning tunneling microscope and use it to perform measurements of the valley polarization of the electronic wave functions and their excitation spectrum in the partially filled zeroth Landau level of graphene. We can extract information such as the strength of Haldane pseudopotentials that characterize the repulsive interactions underlying the fractional quantum states. Our experiments also demonstrate that fractional quantum Hall phases are built upon broken symmetry states that persist at partial filling. Our experimental approach quantifies the valley phase diagram of the partially filled Landau level as a model flat band platform which is applicable to other graphene-based electronic systems

    Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.

    Get PDF
    • …
    corecore