227 research outputs found
Undecidability of the unification and admissibility problems for modal and description logics
We show that the unification problem `is there a substitution instance of a
given formula that is provable in a given logic?' is undecidable for basic
modal logics K and K4 extended with the universal modality. It follows that the
admissibility problem for inference rules is undecidable for these logics as
well. These are the first examples of standard decidable modal logics for which
the unification and admissibility problems are undecidable. We also prove
undecidability of the unification and admissibility problems for K and K4 with
at least two modal operators and nominals (instead of the universal modality),
thereby showing that these problems are undecidable for basic hybrid logics.
Recently, unification has been introduced as an important reasoning service for
description logics. The undecidability proof for K with nominals can be used to
show the undecidability of unification for boolean description logics with
nominals (such as ALCO and SHIQO). The undecidability proof for K with the
universal modality can be used to show that the unification problem relative to
role boxes is undecidable for Boolean description logic with transitive roles,
inverse roles, and role hierarchies (such as SHI and SHIQ)
On (in)tractability of OBDA with OWL 2 QL
We show that, although conjunctive queries over OWL 2 QL ontologies are reducible to database queries, no algorithm can construct such a reduction in polynomial time without changing the data. On the other hand, we give a polynomial reduction for OWL2QL ontologies without role inclusions
Conjunctive query inseparability in OWL2QL is ExpTime-hard
We settle an open question on the complexity of the following problem: given two OWL2QL TBoxes and a signature, decide whether these TBoxes return the same answers to any conjunctive query over any data formulated in the given signature. It has been known that the complexity of this problem is between PSpace and ExpTime. Here we show that the problem is ExpTime-complete and, in fact, deciding whether two OWL2QL knowledge bases (each with its own data) give the same answers to any conjunctive query is ExpTime-hard
Query rewriting over shallow ontologies
We investigate the size of rewritings of conjunctive queries over OWL2QL ontologies of depth 1 and 2 by means of a new hypergraph formalism for computing Boolean functions. Both positive and negative results are obtained. All conjunctive queries over ontologies of depth 1 have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial-size positive existential rewritings; however, for some queries and ontologies of depth 1, positive existential rewritings can only be of superpolynomial size. Both positive existential and nonrecursive datalog rewritings of conjunctive queries and ontologies of depth 2 suffer an exponential blowup in the worst case, while first-order rewritings can grow superpolynomially unless NP is included in� P/poly
Temporalising OWL 2 QL
We design a temporal description logic, TQL, that extends the standard ontology language OWL2QL, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time
On the Succinctness of Query Rewriting over OWL 2 QL Ontologies with Shallow Chases
We investigate the size of first-order rewritings of conjunctive queries over
OWL 2 QL ontologies of depth 1 and 2 by means of hypergraph programs computing
Boolean functions. Both positive and negative results are obtained. Conjunctive
queries over ontologies of depth 1 have polynomial-size nonrecursive datalog
rewritings; tree-shaped queries have polynomial positive existential
rewritings; however, in the worst case, positive existential rewritings can
only be of superpolynomial size. Positive existential and nonrecursive datalog
rewritings of queries over ontologies of depth 2 suffer an exponential blowup
in the worst case, while first-order rewritings are superpolynomial unless
. We also analyse rewritings of
tree-shaped queries over arbitrary ontologies and observe that the query
entailment problem for such queries is fixed-parameter tractable
Temporal description logic for ontology-based data access
Our aim is to investigate ontology-based data access over temporal data with validity time and ontologies capable of temporal conceptual modelling. To this end, we design a temporal description logic, TQL, that extends the standard ontology language OWL2QL, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time
Exponential Lower Bounds and Separation for Query Rewriting
We establish connections between the size of circuits and formulas computing
monotone Boolean functions and the size of first-order and nonrecursive Datalog
rewritings for conjunctive queries over OWL 2 QL ontologies. We use known lower
bounds and separation results from circuit complexity to prove similar results
for the size of rewritings that do not use non-signature constants. For
example, we show that, in the worst case, positive existential and nonrecursive
Datalog rewritings are exponentially longer than the original queries;
nonrecursive Datalog rewritings are in general exponentially more succinct than
positive existential rewritings; while first-order rewritings can be
superpolynomially more succinct than positive existential rewritings
A cookbook for temporal conceptual data modelling with description logic
We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models
- …