39 research outputs found
Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase
HIV-1 integrase (IN) catalyses integration of a DNA copy of the viral genome into the host genome. Specific interactions between retroviral IN and long terminal repeats (LTR) are required for this insertion. To characterize quantitatively the influence of the determinants of DNA substrate specificity on the oligomerization status of IN, we used the small-angle X-ray scattering (SAXS) technique. Under certain conditions in the absence of ODNs IN existed only as monomers. IN preincubation with specific ODNs led mainly to formation of dimers, the relative amount of which correlated well with the increase in the enzyme activity in the 3′-processing reaction. Under these conditions, tetramers were scarce. Non-specific ODNs stimulated formation of catalytically inactive dimers and tetramers. Complexes of monomeric, dimeric and tetrameric forms of IN with specific and non-specific ODNs had varying radii of gyration (R(g)), suggesting that the specific sequence-dependent formation of IN tetramers can probably occur by dimerization of two dimers of different structure. From our data we can conclude that the DNA-induced oligomerization of HIV-1 IN is probably of importance to provide substrate specificity and to increase the enzyme activity
Efficacy and Safety of PEGylated Interferons for Relapsing-Remitting Multiple Sclerosis in Adult Patients: Results of Matching-Adjusted Indirect Comparison
Introduction. Beta interferons are effective and safe agents for the treatment of relapsing-remitting multiple sclerosis (RRMS). PEGylated interferons have been developed in order to increase patient adherence. Direct comparisons of the efficacy and safety of PEGylated interferons have not yet been conducted.
Our objective was to evaluate the efficacy and safety of SamPEG-IFN-β1a versus PEG-IFN-β1a in adult patients with RRMS.
Materials and methods. We conducted a systematic search of randomized clinical trials (RCTs) using the PubMed, Embase and eLIBRARY.RU databases. Efficacy was assessed based on the proportion of patients with disease relapses and the annualized relapse rate (ARR) during the 1st and the 2nd years of treatment. Safety was assessed by the number of patients with adverse events (AEs), serious AEs (SAEs), and any AEs that led to the treatment discontinuation. We conducted pairwise matching-adjusted indirect comparison (MAIC) to assess comparative efficacy of PEGylated IFNs. To evaluate the efficacy, hypotheses of non-inferiority of SamPEG-IFN-β1a to PEG-IFN-β1a and superiority of SamPEG-IFN-β1a over PEG-IFN-β1a were tested.
Results. Based on results of the systematic review, four articles were selected wherein the results of phase 3 clinical trial of PEG-IFN-β1a and phase 2–3 clinical trial of SamPEG-IFN-β1a were described. In PEG-IFN-β1a group (n = 512) the agent was administered once every 2 weeks, in SamPEGIFN-β1a group (n = 114) the agent was administered at a dose of 240 μg. The analysis results confirmed the hypothesis of SamPEG-IFN-β1a non-inferiority to PEG-IFN-β1a in efficacy, while SamPEG-IFN-β1a superiority over PEG-IFN-β1a in efficacy was not confirmed. The hypothesis of SamPEG-IFN-β1a superiority over PEG-IFN-β1a in safety was also confirmed based on a significantly lower incidence of SAEs and any AEs that led to treatment discontinuation.
Conclusions. The proportion of patients with relapses and the ARR in 1 year and in 2 years of therapy indicates that SamPEG-IFN-β1a is non-inferior to PEG-IFN-β1a in efficacy. SamPEG-IFN-B1a demonstrated a more favourable safety profile than PEG-IFN-B1a as showing less odds of SAEs and AEs leading to treatment discontinuation
C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population
Cohorts of amyotrophic lateral sclerosis (ALS) patients and control individuals of Caucasian origin from the Central European Russia (Moscow city and region) were analyzed for the presence of hexanucleotide repeat GGGGCC expansion within the first intron of the C9ORF72 gene. The presence of a large (>40) repeat expansion was found in 15% of familial ALS cases (3 of 20 unrelated familial cases) and 2.5% of sporadic ALS cases (6 of 238) but in none of control cases. These results suggest that the frequency of C9ORF72 hexanucleotide repeats expansions in the Central Europea
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
INNOVATIVE STRATEGIES FOR THE DEVELOPMENT OF THE UNIVERSITY'S ECOSYSTEM IN THE AGE OF DIGITAL TRANSFORMATION
With increasing competition and a rapidly changing world, universities are forced to continuously improve their ecosystems. This is necessary to attract talented students and researchers, as well as to maintain a high level of academic reputation. All these changes are reflected in the development strategies of the university's ecosystems, contributing to their qualitative growth in the new reality.
In the era of the digital economy and the rapid development of information technology, universities are faced with the need to rethink their development strategies and adapt to new challenges. This is necessary to maintain competitiveness and achieve high results.
The authors consider innovative strategies for the development of university ecosystems as a tool to increase their efficiency in the era of digital transformation.
The purpose of the study: analysis of existing innovative strategies used by universities to develop their ecosystem in an era of digital transformation.
Materials and methods: the theoretical and methodological basis of the study is the results of the analysis of the works of domestic scientists, specialists in the field of strategic development of the university ecosystem. The conducted research is based on general and special methods of scientific knowledge: a systematic approach, methods of grouping, classification.
Results: the article accumulates information on the implemented innovative strategies for the development of the university ecosystem in the process of digital transformation.
Practical implications: the main results of the work carried out in terms of the study of trends and prospects for the development of the university's ecosystems are of interest to both theorists and practitioners, since the developed recommendations and strategies can be fully used in its work
New Acylcarnitine Ratio as a Reliable Indicator of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency
Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare fatal disorders of fatty acid β-oxidation with no apparent genotype–phenotype correlation. The measurement of acylcarnitines by MS/MS is a current diagnostic workup in these disorders. Nevertheless, false-positive and false-negative results have been reported, highlighting a necessity for more sensitive and specific biomarkers. This study included 54 patients with LCHAD/MTP deficiency that has been confirmed by biochemical and molecular methods. The analysis of acylcarnitines in dried blood spots was performed using ESI-MS/MS. The established “HADHA ratio” = (C16OH + C18OH + C18:1OH)/C0 was significantly elevated in all 54 affected individuals in comparison to the control group. Apart from 54 LCHAD deficiency patients, the “HADHA ratio” was calculated in 19 patients with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. As VLCAD-deficient patients did not show increased “HADHA ratio”, the results emphasized the high specificity of this new ratio. Therefore, the “HADHA ratio” was shown to be instrumental in improving the overall performance of MS/MS-based analysis of acylcarnitine levels in the diagnostics of LCHAD/MTP deficiencies. The ratio was demonstrated to increase the sensitivity and specificity of this method and reduce the chances of false-negative results
Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4–18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor’s action
Deoxycholic acid as a molecular scaffold for tyrosyl-DNA phosphodiesterase 1 inhibition: A synthesis, structure–activity relationship and molecular modeling study
Para-Bromoanilides of deoxycholic acid with various functional groups on the steroid scaffold were designed as promising tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Tdp1 is a DNA repair enzyme, involved in removing DNA damage caused by topoisomerase I poisons; an important class of anticancer drugs. Thus, reducing the activity of Tdp1 can increase the efficacy of anticancer drugs in current use. Inhibitory activity in the low micromolar and submicromolar concentrations was observed with 3,12-dimethoxy para-bromoanilide 17 being the most active with an IC50 value of 0.27 μM. The activity of N-methyl para-bromoanilides was 3–4.8 times lower than of the corresponding para-bromoanilides. Increased potency of the ligands was seen with higher molecular weight and log P values. The ligands were evaluated for their cytotoxic potential in a panel of tumor cell lines; all were nontoxic to the A549 pulmonary adenocarcinoma cell line. However, derivatives containing a hydroxyl group at the 12th position were more toxic than their 12-hydroxyl group counterparts (acetoxy-, oxo- and methoxy- group) against HCT-116 human colon and HepG2 hepatocellular carcinomas. In addition, an N-methyl substitution led to an increase in toxicity for the HCT-116 and HepG2 cell lines. The excellent activity as well as low cytotoxicity, derivative 17 can be considered as a lead compound for further development
Novel Semisynthetic Derivatives of Bile Acids as Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibitors
An Important task in the treatment of oncological and neurodegenerative diseases is the search for new inhibitors of DNA repair system enzymes. Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is one of the DNA repair system enzymes involved in the removal of DNA damages caused by topoisomerase I inhibitors. Thus, reducing the activity of Tdp1 can increase the effectiveness of currently used anticancer drugs. We describe here a new class of semisynthetic small molecule Tdp1 inhibitors based on the bile acid scaffold that were originally identified by virtual screening. The influence of functional groups of bile acids (hydroxy and acetoxy groups in the steroid framework and amide fragment in the side chain) on inhibitory activity was investigated. In vitro studies demonstrate the ability of the semisynthetic derivatives to effectively inhibit Tdp1 with IC50 up to 0.29 µM. Furthermore, an excellent fit is realized for the ligands when docked into the active site of the Tdp1 enzyme