6 research outputs found

    Conception et caractĂ©risation de structures composites Ă  gĂ©omĂ©trie adaptative Ă  l’aide de renforts tissĂ©s multicouches 3D

    No full text
    Shape memory polymer (SMP) composites are attractive and excellent smart materials due to their outstanding properties and rich functionality as they combine typical mechanical and functional properties of composites with shape memory properties. In particular, 3D reinforced preforms have tremendous potential for the development of functional composites by using the capabilities of 3D woven fabric preform design, and polymer shape memory behavior. Within that scope, this work aims to investigate the shape memory behavior and shape recovery properties of a specific type of 3D multilayer woven SMP composite in response to external stimuli. For this purpose, nine different multilayer stitched fabrics are produced with different weave structures, and different fabric thread densities using polyimide filaments. Then, a series of tests is carried out on these fabrics to evaluate their mechanical and physical properties. The layered fabric design that delivers high mechanical performance is next involved to manufacture the SMP composite samples. A series of experiments including three-point bending and interlaminar shear tests are then performed on these SMP composites to investigate their mechanical responses at different temperatures. Furthermore, the shape memory and shape recovery capability of developed 3D reinforced composite structure are investigated. Fold-deploy and other shape memory cycle tests are performed to evaluate the shape memory characteristics. An optical 3D scanner based on fringe projection is next proposed to precisely acquire the geometry data and perform deformation analysis to quantitatively evaluate the shape fixity and shape recovery behaviors. Finally, sensitive shape fixity and recovery behavior of active shape memory polymer composite is recorded by sophisticated 3 point bending sensor. The results from this study are very promising, demonstrating that these multilayer SMP structures can successfully be recovered following the desired design constraints without noticeable damage.Les composites Ă  base de polymĂšres Ă  mĂ©moire de forme (SMPC) peuvent ĂȘtre considĂ©rĂ© comme des matĂ©riaux actifs, car ils combinent les propriĂ©tĂ©s mĂ©caniques et fonctionnelles typiques des composites avec des propriĂ©tĂ©s de mĂ©moire de forme. En particulier, les prĂ©formes fibreuses tridimensionnelles (3D) ont un potentiel Ă©norme pour le dĂ©veloppement de ces composites car elles permettent de combiner leurs capacitĂ©s de conception 3D et le comportement de polymĂšre Ă  mĂ©moire de forme de la matrice. Dans ce cadre, ce travail vise Ă  Ă©tudier le comportement de la mĂ©moire de forme et les propriĂ©tĂ©s de rĂ©cupĂ©ration de forme d'un type spĂ©cifique de composite SMPC multicouche tissĂ© 3D (SMPC 3D) soumis Ă  stimuli thermiques, externe puis interne. Une sĂ©rie de tests est effectuĂ©e sur neuf renforts 3D pour Ă©valuer leurs propriĂ©tĂ©s mĂ©caniques et physiques puis le renfort qui prĂ©sente les meilleures performances mĂ©caniques est ensuite utilisĂ©e pour fabriquer les Ă©chantillons composites SMPC 3D. Des essais comprenant des tests de flexion trois points et de cisaillement inter laminaire sont ensuite rĂ©alisĂ©s pour Ă©tudier leur rĂ©ponse mĂ©canique pour diffĂ©rentes tempĂ©ratures.Ensuite par des essais spĂ©cifiques, la mĂ©moire de forme et la capacitĂ© de rĂ©cupĂ©ration de forme de ces composite sont Ă©tudiĂ©es. Un scanner 3D basĂ© sur la projection de franges est utilisĂ© pour acquĂ©rir prĂ©cisĂ©ment les donnĂ©es gĂ©omĂ©triques et effectuer une analyse de dĂ©formation afin d'Ă©valuer quantitativement la fixitĂ© de la forme et les comportements de rĂ©cupĂ©ration du composite Ă  mĂ©moire de forme. Enfin, une Ă©tude complĂšte portant sur les deux Ă©tapes caractĂ©ristiques pour un composite Ă  mĂ©moire de forme, la fixation de la forme (fixity) et le retour Ă  la forme initiale (recovery) est prĂ©sentĂ©e. Elle repose sur le dĂ©veloppement d’un essais mĂ©canique particulier basĂ© sur un essai de flexion trois point et met en Ɠuvre des composites autonomes, c’est-Ă -dire comportant une activation thermique interne qui peut ĂȘtre pilotĂ© par effet Joule. Les rĂ©sultats de cette Ă©tude sont trĂšs prometteurs pour des applications de structures dĂ©ployables, car ils montrent que ces structures SMPC 3D peuvent retrouver leur forme initiale avec succĂšs et sans apparition de dommages notables mĂȘme pour des niveaux de compaction important imposĂ© sur la structure lors de la phase initiale de fixation de la forme

    Conception et caractĂ©risation de structures composites Ă  gĂ©omĂ©trie adaptative Ă  l’aide de renforts tissĂ©s multicouches 3D

    No full text
    Les composites Ă  base de polymĂšres Ă  mĂ©moire de forme (SMPC) peuvent ĂȘtre considĂ©rĂ© comme des matĂ©riaux actifs, car ils combinent les propriĂ©tĂ©s mĂ©caniques et fonctionnelles typiques des composites avec des propriĂ©tĂ©s de mĂ©moire de forme. En particulier, les prĂ©formes fibreuses tridimensionnelles (3D) ont un potentiel Ă©norme pour le dĂ©veloppement de ces composites car elles permettent de combiner leurs capacitĂ©s de conception 3D et le comportement de polymĂšre Ă  mĂ©moire de forme de la matrice. Dans ce cadre, ce travail vise Ă  Ă©tudier le comportement de la mĂ©moire de forme et les propriĂ©tĂ©s de rĂ©cupĂ©ration de forme d'un type spĂ©cifique de composite SMPC multicouche tissĂ© 3D (SMPC 3D) soumis Ă  stimuli thermiques, externe puis interne. Une sĂ©rie de tests est effectuĂ©e sur neuf renforts 3D pour Ă©valuer leurs propriĂ©tĂ©s mĂ©caniques et physiques puis le renfort qui prĂ©sente les meilleures performances mĂ©caniques est ensuite utilisĂ©e pour fabriquer les Ă©chantillons composites SMPC 3D. Des essais comprenant des tests de flexion trois points et de cisaillement inter laminaire sont ensuite rĂ©alisĂ©s pour Ă©tudier leur rĂ©ponse mĂ©canique pour diffĂ©rentes tempĂ©ratures.Ensuite par des essais spĂ©cifiques, la mĂ©moire de forme et la capacitĂ© de rĂ©cupĂ©ration de forme de ces composite sont Ă©tudiĂ©es. Un scanner 3D basĂ© sur la projection de franges est utilisĂ© pour acquĂ©rir prĂ©cisĂ©ment les donnĂ©es gĂ©omĂ©triques et effectuer une analyse de dĂ©formation afin d'Ă©valuer quantitativement la fixitĂ© de la forme et les comportements de rĂ©cupĂ©ration du composite Ă  mĂ©moire de forme. Enfin, une Ă©tude complĂšte portant sur les deux Ă©tapes caractĂ©ristiques pour un composite Ă  mĂ©moire de forme, la fixation de la forme (fixity) et le retour Ă  la forme initiale (recovery) est prĂ©sentĂ©e. Elle repose sur le dĂ©veloppement d’un essais mĂ©canique particulier basĂ© sur un essai de flexion trois point et met en Ɠuvre des composites autonomes, c’est-Ă -dire comportant une activation thermique interne qui peut ĂȘtre pilotĂ© par effet Joule. Les rĂ©sultats de cette Ă©tude sont trĂšs prometteurs pour des applications de structures dĂ©ployables, car ils montrent que ces structures SMPC 3D peuvent retrouver leur forme initiale avec succĂšs et sans apparition de dommages notables mĂȘme pour des niveaux de compaction important imposĂ© sur la structure lors de la phase initiale de fixation de la forme.Shape memory polymer (SMP) composites are attractive and excellent smart materials due to their outstanding properties and rich functionality as they combine typical mechanical and functional properties of composites with shape memory properties. In particular, 3D reinforced preforms have tremendous potential for the development of functional composites by using the capabilities of 3D woven fabric preform design, and polymer shape memory behavior. Within that scope, this work aims to investigate the shape memory behavior and shape recovery properties of a specific type of 3D multilayer woven SMP composite in response to external stimuli. For this purpose, nine different multilayer stitched fabrics are produced with different weave structures, and different fabric thread densities using polyimide filaments. Then, a series of tests is carried out on these fabrics to evaluate their mechanical and physical properties. The layered fabric design that delivers high mechanical performance is next involved to manufacture the SMP composite samples. A series of experiments including three-point bending and interlaminar shear tests are then performed on these SMP composites to investigate their mechanical responses at different temperatures. Furthermore, the shape memory and shape recovery capability of developed 3D reinforced composite structure are investigated. Fold-deploy and other shape memory cycle tests are performed to evaluate the shape memory characteristics. An optical 3D scanner based on fringe projection is next proposed to precisely acquire the geometry data and perform deformation analysis to quantitatively evaluate the shape fixity and shape recovery behaviors. Finally, sensitive shape fixity and recovery behavior of active shape memory polymer composite is recorded by sophisticated 3 point bending sensor. The results from this study are very promising, demonstrating that these multilayer SMP structures can successfully be recovered following the desired design constraints without noticeable damage

    Conception et caractĂ©risation de structures composites Ă  gĂ©omĂ©trie adaptative Ă  l’aide de renforts tissĂ©s multicouches 3D

    No full text
    Shape memory polymer (SMP) composites are attractive and excellent smart materials due to their outstanding properties and rich functionality as they combine typical mechanical and functional properties of composites with shape memory properties. In particular, 3D reinforced preforms have tremendous potential for the development of functional composites by using the capabilities of 3D woven fabric preform design, and polymer shape memory behavior. Within that scope, this work aims to investigate the shape memory behavior and shape recovery properties of a specific type of 3D multilayer woven SMP composite in response to external stimuli. For this purpose, nine different multilayer stitched fabrics are produced with different weave structures, and different fabric thread densities using polyimide filaments. Then, a series of tests is carried out on these fabrics to evaluate their mechanical and physical properties. The layered fabric design that delivers high mechanical performance is next involved to manufacture the SMP composite samples. A series of experiments including three-point bending and interlaminar shear tests are then performed on these SMP composites to investigate their mechanical responses at different temperatures. Furthermore, the shape memory and shape recovery capability of developed 3D reinforced composite structure are investigated. Fold-deploy and other shape memory cycle tests are performed to evaluate the shape memory characteristics. An optical 3D scanner based on fringe projection is next proposed to precisely acquire the geometry data and perform deformation analysis to quantitatively evaluate the shape fixity and shape recovery behaviors. Finally, sensitive shape fixity and recovery behavior of active shape memory polymer composite is recorded by sophisticated 3 point bending sensor. The results from this study are very promising, demonstrating that these multilayer SMP structures can successfully be recovered following the desired design constraints without noticeable damage.Les composites Ă  base de polymĂšres Ă  mĂ©moire de forme (SMPC) peuvent ĂȘtre considĂ©rĂ© comme des matĂ©riaux actifs, car ils combinent les propriĂ©tĂ©s mĂ©caniques et fonctionnelles typiques des composites avec des propriĂ©tĂ©s de mĂ©moire de forme. En particulier, les prĂ©formes fibreuses tridimensionnelles (3D) ont un potentiel Ă©norme pour le dĂ©veloppement de ces composites car elles permettent de combiner leurs capacitĂ©s de conception 3D et le comportement de polymĂšre Ă  mĂ©moire de forme de la matrice. Dans ce cadre, ce travail vise Ă  Ă©tudier le comportement de la mĂ©moire de forme et les propriĂ©tĂ©s de rĂ©cupĂ©ration de forme d'un type spĂ©cifique de composite SMPC multicouche tissĂ© 3D (SMPC 3D) soumis Ă  stimuli thermiques, externe puis interne. Une sĂ©rie de tests est effectuĂ©e sur neuf renforts 3D pour Ă©valuer leurs propriĂ©tĂ©s mĂ©caniques et physiques puis le renfort qui prĂ©sente les meilleures performances mĂ©caniques est ensuite utilisĂ©e pour fabriquer les Ă©chantillons composites SMPC 3D. Des essais comprenant des tests de flexion trois points et de cisaillement inter laminaire sont ensuite rĂ©alisĂ©s pour Ă©tudier leur rĂ©ponse mĂ©canique pour diffĂ©rentes tempĂ©ratures.Ensuite par des essais spĂ©cifiques, la mĂ©moire de forme et la capacitĂ© de rĂ©cupĂ©ration de forme de ces composite sont Ă©tudiĂ©es. Un scanner 3D basĂ© sur la projection de franges est utilisĂ© pour acquĂ©rir prĂ©cisĂ©ment les donnĂ©es gĂ©omĂ©triques et effectuer une analyse de dĂ©formation afin d'Ă©valuer quantitativement la fixitĂ© de la forme et les comportements de rĂ©cupĂ©ration du composite Ă  mĂ©moire de forme. Enfin, une Ă©tude complĂšte portant sur les deux Ă©tapes caractĂ©ristiques pour un composite Ă  mĂ©moire de forme, la fixation de la forme (fixity) et le retour Ă  la forme initiale (recovery) est prĂ©sentĂ©e. Elle repose sur le dĂ©veloppement d’un essais mĂ©canique particulier basĂ© sur un essai de flexion trois point et met en Ɠuvre des composites autonomes, c’est-Ă -dire comportant une activation thermique interne qui peut ĂȘtre pilotĂ© par effet Joule. Les rĂ©sultats de cette Ă©tude sont trĂšs prometteurs pour des applications de structures dĂ©ployables, car ils montrent que ces structures SMPC 3D peuvent retrouver leur forme initiale avec succĂšs et sans apparition de dommages notables mĂȘme pour des niveaux de compaction important imposĂ© sur la structure lors de la phase initiale de fixation de la forme

    Opracowanie wielowarstwowych tkanin dla struktury kompozytowej o geometrii adaptacyjnej

    No full text
    In this study nine multilayer 3D woven structures were produced using polyamide filament yarns both in the warp and weft direction. Three different weaves: plain, 1/3 twill and 3/1 rib in the middle layer, and plain weave in both the top and bottom layers were produced. All specimens were developed on a narrow weaving machine equipped with multi beams and creel options. The samples were tested for tensile strength, air permeability, compressibility, resilience, bending and shear stiffness. Better compressibility was observed in 3/1 warp rib, followed by 1/3 twill and plain weave in the middle layer. Shear stiffness and bending rigidity were higher for those fabrics which had a plain weave in all layers and higher filling density. The air permeability was higher for low weft density, plain weave and its derivative 3/1 warp rib in the middle layer. Tensile strength was higher for those fabrics which were produced with higher weft densities.W badaniu wytworzono dziewięć wielowarstwowych tkanych struktur 3D z przędz z wƂókien poliamidowych zarĂłwno w kierunku osnowy, jak i wątku. Zastosowano trzy rodzaje splotĂłw. PrĂłbki zbadano pod kątem wytrzymaƂoƛci na rozciąganie, przepuszczalnoƛci powietrza, ƛciƛliwoƛci, sprÄ™ĆŒystoƛci, zginania i sztywnoƛci. Wartoƛci sztywnoƛci byƂy wyĆŒsze dla tych tkanin, ktĂłre miaƂy splot pƂócienny we wszystkich warstwach i większą gęstoƛć wypeƂnienia. Przepuszczalnoƛć powietrza byƂa wyĆŒsza dla wątku o maƂej gęstoƛci i splotu pƂóciennego. WytrzymaƂoƛć na rozciąganie byƂa wyĆŒsza dla tkanin, ktĂłre byƂy wytwarzane z większą gęstoƛcią wątku

    Design and characterization of 3D multilayer woven reinforcements shape memory polymer composites

    No full text
    Shape memory polymer (SMP) composites are attractive and excellent smart materials due to their outstanding properties and rich functionality as they combine typical mechanical and functional properties of composites with shape memory properties. In particular, 3D reinforced preforms have tremendous potential for the development of functional composites by using the capabilities of 3D woven fabric preform design, and polymer shape memory behavior. Within that scope, this work aims to investigate the shape memory behavior and shape recovery properties of a specific type of 3D multilayer woven SMP composite in response to external stimuli. For this purpose, nine different multilayer stitched fabrics are produced with different weave structures, and different fabric thread densities using polyimide filaments. Then, a series of tests is carried out on these fabrics to evaluate their mechanical and physical properties. The layered fabric design that delivers high mechanical performance is next involved to manufacture the SMP composite samples, for which shape recovery capability is investigated. Fold-deploy and other shape memory cycle tests are performed to evaluate the shape memory characteristics. An optical 3D scanner based on fringe projection is further proposed to precisely acquire the geometry data and perform deformation analysis to quantitatively evaluate the shape fixity and shape recovery behaviors. The results from this study are very promising, demonstrating that these multilayer SMP structures can successfully be recovered following the desired design constraints without noticeable damage

    Multifunctional Electrically Conductive Copper Electroplated Fabrics Sensitizes by In-Situ Deposition of Copper and Silver Nanoparticles

    No full text
    In this study, we developed multifunctional and durable textile sensors. The fabrics were coated with metal in two steps. At first, pretreatment of fabric was performed, and then copper and silver particles were coated by the chemical reduction method. Hence, the absorbance/adherence of metal was confirmed by the deposition of particles on microfibers. The particles filled the micro spaces between the fibers and made the continuous network to facilitate the electrical conduction. Secondly, further electroplating of the metal was performed to make the compact layer on the particle- coated fabric. The fabrics were analyzed against electrical resistivity and electromagnetic shielding over the frequency range of 200 MHz to 1500 MHz. The presence of metal coating was confirmed from the surface microstructure of coated fabric samples examined by scanning electron microscopy, EDS, and XRD tests. For optimized plating parameters, the minimum surface resistivity of 67 Ω, EMI shielding of 66 dB and Ohmic heating of 118 °C at 10 V was observed. It was found that EMI SH was increased with an increase in the deposition rate of the metal. Furthermore, towards the end, the durability of conductive textiles was observed against severe washing. It was observed that even after severe washing there was an insignificant increase in electrical resistivity and good retention of the metal coating, as was also proven with SEM images
    corecore