1,760 research outputs found
Determining the influence and effects of manufacturing variables on sulfur dioxide cells
A survey of the Li/SO2 manufacturing community was conducted to determine where variability exists in processing. The upper and lower limits of these processing variables might, by themselves or by interacting with other variables, influence safety, performance, and reliability. A number of important variables were identified and a comprehensive design experiment is being proposed to make the proper determinations
The Texture of Surficial Sediments in Western Long Island Sound off the Norwalk Islands, Connecticut
Grain-size analyses were performed on 69 samples from western Long Island Sound. The relative grain-size frequency distributions and related statistics are reported herein. Descriptions of the benthic character from video tapes and still camera photographs of the bottom at these stations, and 33 others, are also presented. The southern and eastern parts of the study area are dominated by poorly sorted clayey silts that have nearly symmetrical distributions. Gravelly sediments are prevalent in the shallow northwestern part of the study area, but are also present in central part of the study area. Bands of sand, silty sand, and sand-silt-clay occur on the flanks of the gravelly areas
Evaluation of the bond performance in FRP-brick components re-bonded after initial delamination
The bond behavior between Fiber Reinforced Polymers (FRPs) and masonry substrates has been the subject of many studies during the last years. Recent accelerated aging tests have shown that bond degradation and FRP delamination are likely to occur in FRP-strengthened masonry components under hygrothermal conditions. While an investigation on the possible methods to improve the durability of these systems is necessary, the applicability of different bond repair methods should also be studied.
This paper aims at investigating the debonding mechanisms after repairing delaminated FRP-strengthened masonry components. FRP-strengthened brick specimens, after being delaminated, are repaired with two different adhesives: a conventional epoxy resin and a highly flexible polymer. The latter is used as an innovative adhesive in structural applications. The bond behavior in the repaired specimens is investigated by performing single-lap shear bond tests. Digital image correlation (DIC) is used for deeper investigation of the surface deformation and strains development. The effectiveness of the repair methods is discussed and compared with the strengthened specimens.The first author acknowledges the financial support of the Portuguese Science Foundation (Fundacao de Ciencia e Tecnologia, FCT), through grant SFRH/BPD/92614/2013. Additional acknowledgement goes to Sika Poland for providing the PS polymer to the laboratory of the Minho University in Portugal
Screening nuclear field fluctuations in quantum dots for indistinguishable photon generation
A semiconductor quantum dot can generate highly coherent and
indistinguishable single photons. However, intrinsic semiconductor dephasing
mechanisms can reduce the visibility of two-photon interference. For an
electron in a quantum dot, a fundamental dephasing process is the hyperfine
interaction with the nuclear spin bath. Here we directly probe the consequence
of the fluctuating nuclear spins on the elastic and inelastic scattered photon
spectra from a resident electron in a single dot. We find the nuclear spin
fluctuations lead to detuned Raman scattered photons which are distinguishable
from both the elastic and incoherent components of the resonance fluorescence.
This significantly reduces two-photon interference visibility. However, we
demonstrate successful screening of the nuclear spin noise which enables the
generation of coherent single photons that exhibit high visibility two-photon
interference.Comment: 5 pages, 4 figures + Supplementary Informatio
Analysis of lower limb internal kinetics and electromyography in elite race walking.
The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles
Robustness Verification of Support Vector Machines
We study the problem of formally verifying the robustness to adversarial
examples of support vector machines (SVMs), a major machine learning model for
classification and regression tasks. Following a recent stream of works on
formal robustness verification of (deep) neural networks, our approach relies
on a sound abstract version of a given SVM classifier to be used for checking
its robustness. This methodology is parametric on a given numerical abstraction
of real values and, analogously to the case of neural networks, needs neither
abstract least upper bounds nor widening operators on this abstraction. The
standard interval domain provides a simple instantiation of our abstraction
technique, which is enhanced with the domain of reduced affine forms, which is
an efficient abstraction of the zonotope abstract domain. This robustness
verification technique has been fully implemented and experimentally evaluated
on SVMs based on linear and nonlinear (polynomial and radial basis function)
kernels, which have been trained on the popular MNIST dataset of images and on
the recent and more challenging Fashion-MNIST dataset. The experimental results
of our prototype SVM robustness verifier appear to be encouraging: this
automated verification is fast, scalable and shows significantly high
percentages of provable robustness on the test set of MNIST, in particular
compared to the analogous provable robustness of neural networks
- …