4 research outputs found

    Optimization of electrocatalyst performance of platinum–ruthenium induced with MXene by response surface methodology for clean energy application

    Get PDF
    Fuel cell produces clean sources of energy and yielding can be improved using emerging material (MXene) in electrocatalysis performance in a fuel cell system. However, MXene in electrocatalysis area for fuel cell is not discovered yet. Therefore, the aim of this study is to enhance the direct methanol fuel cell (DMFC) electrocatalyst performance using combination of bimetallic PtRu and MXene. Optimization is carried out using response surface methodology (RSM). Composition of MXene, Nafion content and methanol concentration are used as factors (input) and current density is used as a response (output) for the optimization analysis. A cyclic voltammetry (CV) is used to measure the current density. RSM generates optimum factors with MXene composition 78.90 wt%, Nafion content 19.71 wt% and methanol concentration of 2.82M. The optimum response is predicted to be 186.59mA/mgPtRu. The validation test is carried out and the result shows that the average current density is 187.05mA/mgPtRu. PtRu/MXene electrocatalyst produces 2.34 times higher current density compared to PtRu/C commercial electrocatalyst. This indicates that MXene has high potential as a nanocatalyst for cleaner energy production through the fuel cell

    Enhancing methanol oxidation reaction with platinum–ruthenium embedded MXene:Synthesis, characterization, and electrochemical properties

    Get PDF
    Methanol oxidation reaction (MOR) is the main reaction that takes place in an anodic electrode of a direct methanol fuel cell (DMFC), whichis a promising electrochemical energy conversion technology. This study presents a novel approach for enhancing the electrocatalytic activity of MOR performance using composite of MXene (Ti3C2Tx) with Pt and Ru bimetal. The aimed of this study is to investigates the optimum electrocatalyst loading for PtRu/Ti3C2Tx to improve and stand out the potential of electrocatalysts in the MOR catalytic activity. The study also provides detailed physical characterizations and electrochemical measurements. The results show that the electrocatalyst loading of 0.40 mgcm−2 has the highest ECSA value and better reaction activity compared to other loadings. The electrocatalytic activity, CO tolerance, and stability of the electrocatalyst also show the better result for this loading. The comparative study with previous research shows that the PtRu/Ti3C2Tx electrocatalyst exhibits the highest catalytic activity, which is 5.13 times better than that of the previous study on the Pt/C electrocatalyst. Thus, the novel combination of MXene structure and PtRu indicates a promising electrocatalyst for MOR
    corecore