630 research outputs found

    The role of dynamic response parameters in damage prediction

    Get PDF
    This article presents a literature review of published methods for damage identification and prediction in mechanical structures. It discusses ways which can identify and predict structural damage from dynamic response parameters such as natural frequencies, mode shapes, and vibration amplitudes. There are many structural applications in which dynamic loads are coupled with thermal loads. Hence, a review on those methods, which have discussed structural damage under coupled loads, is also presented. Structural health monitoring with other techniques such as elastic wave propagation, wavelet transform, modal parameter, and artificial intelligence are also discussed. The published research is critically analyzed and the role of dynamic response parameters in structural health monitoring is discussed. The conclusion highlights the research gaps and future research direction

    Method of convex rigid frames and applications in studies of multipartite quNit pure-states

    Full text link
    In this Letter we suggest a method of convex rigid frames in the studies of the multipartite quNit pure-states. We illustrate what are the convex rigid frames and what is the method of convex rigid frames. As the applications we use this method to solve some basic problems and give some new results (three theorems): The problem of the partial separability of the multipartite quNit pure-states and its geometric explanation; The problem of the classification of the multipartite quNit pure-states, and give a perfect explanation of the local unitary transformations; Thirdly, we discuss the invariants of classes and give a possible physical explanation.Comment: 6 pages, no figur

    Instant dynamic response measurements for crack monitoring in metallic beams

    Get PDF
    This paper investigates the interdependencies of the modal behaviour of a cantilever beam, its dynamic response and crack growth. A methodology is proposed that can predict crack growth in a metallic beam using only its dynamic response. Analytical and numerical relationships are formulated between the fundamental mode and crack growth using the existing literature and finite element analysis (FEA) software, respectively. A relationship between the dynamic response and the modal behaviour is formulated empirically. All three relationships are used to predict crack growth and propagation. The load conditions are considered the same in all of the experiments for both model development and model validation. The predicted crack growth is compared with the visual observations. The overall error is within acceptable limits in all comparisons. The results obtained demonstrate the possibility of diagnosing crack growth in metallic beams at any instant within the operational conditions and environment

    In-situ dynamic response measurement for damage quantification of 3D printed ABS cantilever beam under thermomechanical load

    Get PDF
    Acrylonitrile butadiene styrene (ABS) offers good mechanical properties and is effective in use to make polymeric structures for industrial applications. It is one of the most common raw material used for printing structures with fused deposition modeling (FDM). However, most of its properties and behavior are known under quasi-static loading conditions. These are suitable to design ABS structures for applications that are operated under static or dead loads. Still, comprehensive research is required to determine the properties and behavior of ABS structures under dynamic loads, especially in the presence of temperature more than the ambient. The presented research was an effort mainly to provide any evidence about the structural behavior and damage resistance of ABS material if operated under dynamic load conditions coupled with relatively high-temperature values. A non-prismatic fixed-free cantilever ABS beam was used in this study. The beam specimens were manufactured with a 3D printer based on FDM. A total of 190 specimens were tested with a combination of different temperatures, initial seeded damage or crack, and crack location values. The structural dynamic response, crack propagation, crack depth quantification, and their changes due to applied temperature were investigated by using analytical, numerical, and experimental approaches. In experiments, a combination of the modal exciter and heat mats was used to apply the dynamic loads on the beam structure with different temperature values. The response measurement and crack propagation behavior were monitored with the instrumentation, including a 200× microscope, accelerometer, and a laser vibrometer. The obtained findings could be used as an in-situ damage assessment tool to predict crack depth in an ABS beam as a function of dynamic response and applied temperature

    Low compressible noble metal carbides with rock-salt structure: ab initio total energy calculations of the elastic stability

    Full text link
    We have systematically studied the mechanical stability of all noble metal carbides with the rock-salt structure by calculating their elastic constants within the density function theory scheme. It was found that only four carbides (RuC, PdC, AgC and PtC) are mechanically stable. In particular, we have shown that RuC, PdC, and PtC have very high bulk modulus, which has been remarkably observed by the most recent experiment for the case of PtC. From the calculated density of states, we can conclude that these compounds are metallic, like the conventional group IV and group V transition metal carbides.Comment: Appl. Phys. Lett. 89, 071913 (2006

    O gene do receptor GABA A- γ2 (GABRG2) no transtorno obsessivo-compulsivo

    Get PDF
    OBJECTIVE: The γ-aminobutyric acid type A (GABA A) system may be implicated in obsessive-compulsive disorder, based on its major role in modulation of anxiety and its function as the principal inhibitory neurotransmitter system in the cortex. In addition, glutamatergic/GABAergic mechanisms appear to play a role in the pathophysiology of obsessive-compulsive disorder, making the GABA A receptor-γ2 (GABργ2) gene a good candidate for susceptibility in this disorder. METHOD: 118 probands meeting DSM-IV criteria for primary obsessive-compulsive disorder and their available parents were recruited for participation in this study and informed consent was obtained. An NciI restriction site polymorphism in the second intron was genotyped and data was analyzed using the Transmission Disequilibrium Test. RESULTS: In total, 61 of the participating families were informative (i.e., with at least one heterozygous parent). No biases were observed in the transmission of either of the two alleles (χ2 = 0.016, 1 d.f., p = 0.898) to the affected probands in the total sample. CONCLUSION/DISCUSSION: While these results do not provide support for a major role for the GABA A receptor-γ2 in obsessive-compulsive disorder, further investigations of this gene in larger samples are warranted

    What Should a Psychiatrist Know About Genetics? Review and Recommendations From the Residency Education Committee of the International Society of Psychiatric Genetics.

    Get PDF
    The International Society of Psychiatric Genetics (ISPG) created a Residency Education Committee with the purpose of identifying key genetic knowledge that should be taught in psychiatric training programs. Thirteen committee members were appointed by the ISPG Board of Directors, based on varied training, expertise, gender, and national origin. The Committee has met quarterly for the past 2 years, with periodic reports to the Board and to the members of the Society. The information summarized includes the existing literature in the field of psychiatric genetics and the output of ongoing large genomics consortia. An outline of clinically relevant areas of genetic knowledge was developed, circulated, and approved. This document was expanded and annotated with appropriate references, and the manuscript was developed. Specific information regarding the contribution of common and rare genetic variants to major psychiatric disorders and treatment response is now available. Current challenges include the following: (1) Genetic testing is recommended in the evaluation of autism and intellectual disability, but its use is limited in current clinical practice. (2) Commercial pharmacogenomic testing is widely available, but its utility has not yet been clearly established. (3) Other methods, such as whole exome and whole genome sequencing, will soon be clinically applicable. The need for informed genetic counseling in psychiatry is greater than ever before, knowledge in the field is rapidly growing, and genetic education should become an integral part of psychiatric training

    Quadratic Volume Preserving Maps

    Full text link
    We study quadratic, volume preserving diffeomorphisms whose inverse is also quadratic. Such maps generalize the Henon area preserving map and the family of symplectic quadratic maps studied by Moser. In particular, we investigate a family of quadratic volume preserving maps in three space for which we find a normal form and study invariant sets. We also give an alternative proof of a theorem by Moser classifying quadratic symplectic maps.Comment: Ams LaTeX file with 4 figures (figure 2 is gif, the others are ps

    Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations

    Full text link
    We have performed systematic first-principles calculations on di-carbide, -nitride, -oxide and -boride of platinum and osmium with the fluorite structure. It is found that only PtN2_{2}, OsN2_{2} and OsO2_{2} are mechanically stable. In particular OsN2_{2} has the highest bulk modulus of 360.7 GPa. Both the band structure and density of states show that the new phase of OsN2_{2} is metallic. The high bulk modulus is owing to the strong covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense packed fluorite structure.Comment: Phys. Rev. B 74,125118 (2006
    corecore