10 research outputs found

    Application of gaussian processes to online approximation of compressor maps for load-sharing in a compressor station

    Get PDF
    Devising optimal operating strategies for a compressor station relies on the knowledge of compressor characteristics. As the compressor characteristics change with time and use, it is necessary to provide accurate models of the characteristics that can be used in optimization of the operating strategy. This paper proposes a new algorithm for online learning of the characteristics of the compressors using Gaussian Processes. The performance of the new approximation is shown in a case study with three compressors. The case study shows that Gaussian Processes accurately capture the characteristics of compressors even if no knowledge about the characteristics is initially available. The results show that the flexible nature of Gaussian Processes allows them to adapt to the data online making them amenable for use in real-time optimization problems

    Predictive control co-design for enhancing flexibility in residential housing with battery degradation

    Get PDF
    Buildings are responsible for about a quarter of global energy-related CO2 emissions. Consequently, the decarbonisation of the housing stock is essential in achieving net-zero carbon emissions. Global decarbonisation targets can be achieved through increased efficiency in using energy generated by intermittent resources. The paper presents a co-design framework for simultaneous optimal design and operation of residential buildings using Model Predictive Control (MPC). The framework is capable of explicitly taking into account operational constraints and pushing the system to its efficiency and performance limits in an integrated fashion. The optimality criterion minimises system cost considering time-varying electricity prices and battery degradation. A case study illustrates the potential of co-design in enhancing flexibility and self-sufficiency of a system operating under different conditions. Specifically, numerical results from a low-fidelity model show substantial carbon emission reduction and bill savings compared to an a-priori sizing approach

    Fast and accurate method for computing non-smooth solutions to constrained control problems

    Get PDF
    Introducing flexibility in the time-discretisation mesh can improve convergence and computational time when solving differential equations numerically, particularly when the solutions are discontinuous, as commonly found in control problems with constraints. State-of-the-art methods use fixed mesh schemes, which cannot achieve superlinear convergence in the presence of non-smooth solutions. In this paper, we propose using a flexible mesh in an integrated residual method. The locations of the mesh nodes are introduced as decision variables, and constraints are added to set upper and lower bounds on the size of the mesh intervals. We compare our approach to a uniform fixed mesh on a real-world satellite reorientation example. This example demonstrates that the flexible mesh enables the solver to automatically locate the discontinuities in the solution, has superlinear convergence and faster solve time

    Turbomachinery degradation monitoring using adaptive trend analysis

    No full text
    Performance deterioration in turbomachinery is an unwanted phenomenon that changes the behaviour of the system. It can be described by a degradation indicator based on deviations from expected values of process variables. Existing models assume that the degradation is strictly increasing with fixed convexity and that there are no additional changes during the considered operating period. This work proposes the use of an exponential trend approximation with shape adaptation and apply it in a moving window framework. The suggested method of adjustment makes it possible for the model to follow the evolution of the indicator over time. The approximation method is then applied for monitoring purposes, to predict future degradation. The influence of the tuning parameters on the accuracy of the algorithm is investigated and recommendations for the values are derived. Finally directions for further work are proposed

    Turbomachinery degradation monitoring using adaptive trend analysis

    No full text
    Performance deterioration in turbomachinery is an unwanted phenomenon that changes the behaviour of the system. It can be described by a degradation indicator based on deviations from expected values of process variables. Existing models assume that the degradation is strictly increasing with fixed convexity and that there are no additional changes during the considered operating period. This work proposes the use of an exponential trend approximation with shape adaptation and apply it in a moving window framework. The suggested method of adjustment makes it possible for the model to follow the evolution of the indicator over time. The approximation method is then applied for monitoring purposes, to predict future degradation. The influence of the tuning parameters on the accuracy of the algorithm is investigated and recommendations for the values are derived. Finally directions for further work are proposed

    Adaptive detection and prediction of performance degradation in off-shore turbomachinery

    No full text
    Performance-based maintenance of machinery relies on detection and prediction of performance degradation. Degradation indicators calculated from process measurements need to be approximated with degradation models that smooth the variations in the measurements and give predictions of future values of the indicator. Existing models for performance degradation assume that the performance monotonically decreases with time. In consequence, the models yield suboptimal performance in performance-based maintenance as they do not take into account that performance degradation can reverse itself. For instance, deposits on the blades of a turbomachine can be self-cleaning in some conditions. In this study, a data-driven algorithm is proposed that detects if the performance degradation indicator is increasing or decreasing and adapts the model accordingly. A moving window approach is combined with adaptive regression analysis of operating data to predict the expected value of the performance degradation indicator and to quantify the uncertainty of predictions. The algorithm is tested on industrial performance degradation data from two independent offshore applications, and compared with four other approaches. The parameters of the algorithm are discussed and recommendations on the optimal choices are made. The algorithm proved to be portable and the results are promising for improving performance-based maintenance

    A Modelling Workflow for Predictive Control in Residential Buildings

    No full text
    Despite a large body of research, the widespread application of Model Predictive Control (MPC) to residential buildings has yet to be realised. The modelling challenge is often cited as a significant obstacle. This chapter establishes a systematic workflow, from detailed simulation model development to control-oriented model generation to act as a guide for practitioners in the residential sector. The workflow begins with physics-based modelling methods for analysis and evaluation. Following this, model-based and data-driven techniques for developing low-complexity, control-oriented models are outlined. Through sections detailing these different stages, a case study is constructed, concluding with a final section in which MPC strategies based on the proposed methods are evaluated, with a price-aware formulation producing a reduction in operational space-heating cost of 11%. The combination of simulation model development, control design and analysis in a single workflow can encourage a more rapid uptake of MPC in the sector

    MPC and Optimal Design of Residential Buildings with Seasonal Storage: A Case Study

    No full text
    Residential buildings account for about a quarter of the global energy use. As such, residential buildings can play a vital role in achieving net-zero carbon emissions through efficient use of energy and balance of intermittent renewable generation. This chapter presents a co-design framework for simultaneous optimisation of the design and operation of residential buildings using Model Predictive Control (MPC). The adopted optimality criterion maximises cost savings under time-varying electricity prices. By formulating the co-design problem using model predictive control, we then show a way to exploit the use of seasonal storage elements operating on a yearly timescale. A case study illustrates the potential of co-design in enhancing flexibility and self-sufficiency of a system operating on multiple timescales. In particular, numerical results from a low-fidelity model report approximately doubled bill savings and carbon emission reduction compared to the a priori sizing approach
    corecore