
  

 

Abstract — Devising optimal operating strategies for a 
compressor station relies on the knowledge of compressor 
characteristics. As the compressor characteristics change with 
time and use, it is necessary to provide accurate models of the 
characteristics that can be used in optimization of the operating 
strategy. This paper proposes a new algorithm for online 
learning of the characteristics of the compressors using Gaussian 
Processes. The performance of the new approximation is shown 
in a case study with three compressors. The case study shows 
that Gaussian Processes accurately capture the characteristics of 
compressors even if no knowledge about the characteristics is 
initially available. The results show that the flexible nature of 
Gaussian Processes allows them to adapt to the data online 
making them amenable for use in real-time optimization 
problems. 

I. INTRODUCTION 

The transport of natural gas along pipelines can range over 
several thousand kilometers and result in pressure losses due 
to friction. These pressure losses are compensated by 
compressor stations at regular intervals such that the pressure 
of the gas is boosted to ensure adequate transport to the 
destination of choice. Compressor stations consist of 
compressors arranged in a parallel or series formation which is 
typically decided based on a techno-economic analysis [1]. 
These compressors will have performance characteristics 
defined in the form of compressor maps, which express the 
efficiency of the compressor as a function of mass flow and 
pressure ratio. These performance characteristics tend to differ 
from one machine to the other and will vary over time due to 
degradation phenomena [2]. For compressors with variable 
speed drivers, the compressor operating point can be 
manipulated to alter the compressor efficiency to minimize the 
power consumption. However, when multiple compressors are 
combined as part of a compressor station, all with different 
performance characteristics, the minimization of the power 
consumption of the whole station becomes a complex 
optimization problem referred to as load sharing optimization 
(LSO) [3] [4] [5] [6] [7]. For parallel formations, which will 
be the focus of this paper, load sharing optimization attempts 
to solve the problem of mass flowrate allocation to each of the 
compressors. Effectively, the compressor station will get a 
mass flowrate target for the whole station from a dispatch 
center. Load sharing optimization then attempts to determine 
the allocation of the total flow to each of the individual 

 
 

compressors which minimizes the total power consumption of 
the station. The solution to this problem, which are the 
individual compressor mass flowrate targets, are then sent as 
set points to low-level controllers for each of the machines 
which attempts to track this reference. This is actuated by 
adjusting the torque applied to the compressors and hence the 
compressor speed.   

The complexity of the problem arises from the fact that an 
accurate model of the compressor performance characteristics 
is necessary to achieve an accurate solution to the optimization 
problem. Without an up-to-date and accurate model, there is a 
risk that the compressor station can be operated in a sub-
optimal manner due to plant-model mismatch. This is a known 
issue in the real-time optimization literature and several 
adaptation strategies have been proposed to this end [8]. 
Namely [8] classifies three primary approaches; (i) Model-
parameter adaptation or the two-step approach whereby the 
model parameters are estimated and updated based on output 
measurements from the system before the updated model is 
used for optimization. (ii) Modifier adaptation where the cost 
function and constraints are modified before optimization is 
performed to ensure the model and plant share the same 
optimality conditions. (iii) Direct input adaptation whereby 
the optimization problem is reformulated into a feedback 
control problem. Specifically, model-parameter adaptation 
and modifier adaptation have been previously used to address 
the issue of load sharing optimization applied to compressor 
stations. In particular, both [6] and [7] use the modifier 
adaptation approach to ensure the model shares the same 
optimality conditions as the plant. However, as explained in 
both [6] and [8], a major challenge for the modifier adaptation 
approach is the accurate estimation of the gradients of the cost 
function and/or constraints. In both [6] and [7], this issue is 
alleviated by exploitation of the problem structure which 
allows for the gradients to be estimated, however, this may not 
generally be the case. In addition to this, modifier adaptation 
can be highly sensitive to noisy measurements which may 
make the approach less robust when the level of measurement 
noise is significant as discussed in [8] and [9].  

 On the other hand, [3], [4] and [5] adopted the model-
parameter adaptation approach in order to overcome the issue 
of plant-model mismatch. However, as explained in [8], the 
robustness of this approach relies on the ability of the 
adaptation scheme to reduce the plant-model mismatch. 
Where a particular parametric model is used to represent the 
system of interest, a structural mismatch may exist between 
the model and plant if the model structure is not sufficient to 
capture the real behavior of the plant. The challenge with 
compressor performance maps is that a structurally correct 
representation is seldom available as degradation of 
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compressor performance typically occurs over the lifetime of 
the compressor. As a result, a parametric model of the 
compressor map, such as a polynomial expression as used in  
[3], [4] and [5], may quickly begin to exhibit a structural 
mismatch after some time.  

However as discussed in [9], if the model used is flexible 
enough to overcome any structural plant-model mismatch then 
the authors of [9] argue that the classical method of model-
parameter adaptation is a robust and reliable approach when 
considering different degrees of plant-model mismatch as well 
as measurement noise. For this reason, in this paper we 
propose the use of a non-parametric model, namely Gaussian 
Processes (GP) [10]. The chief advantage of using a GP is that, 
as a non-parametric model, no underlying assumptions 
regarding the functional form of the system to be represented 
are made. Consequently, GPs are highly flexible, and the issue 
of structural mismatch can be avoided, and the overall plant-
model mismatch can be minimized. This addresses the major 
limitations of the model-parameter adaptation approach as 
discussed in [8] and [9]. As demonstrated in the rest of the 
paper, the use of Gaussian Processes in the model-parameter 
adaptation approach to the load sharing optimization problem 
is a robust technique which can handle varying degrees of 
plant-model mismatch and adapt accordingly to uncertainty.  

II. THE LOAD SHARING OPTIMIZATION PROBLEM 

A. Problem formulation 

In this paper, we will consider the problem of load sharing 
optimization applied to the parallel arrangement of three 
compressors as depicted in Fig 1. In this arrangement, load 
sharing optimization attempts to distribute the station mass 
flow rate target to each of the machines to minimize the total 
power consumption of the station. The objective function can 
be written as: 

 J(mi̇ ) = ∑ Pi(mi̇ ,ηi)
Nc
i=1  (1)

where Nc is the number of compressors (for this case Nc = 3), 
i  ∈ ℤ  is the compressor index, mi̇  ∈ ℝ is the ith compressor 
mass flowrate, Pi ∈ ℝ is the power consumption of the ith 
compressor and ηi ∈ ℝ is the compressor efficiency of the ith 
compressor. As explained in section I, the compressor map 
expresses the compressor efficiency, ηi, as a function of both 
the compressor mass flowrate and pressure ratio of the 
compressor which we denote as Πi ∈ ℝ. The power 
consumption of the compressor can be expressed as: 

 Pi = 
yp,i

ηi
mi̇  (2)

where yp,i∈ ℝ is the polytropic head of compressor i and is 

defined as: 

 yp,i= 
ZinRTin

MW

nv

nv-1
Πi

nv
nv-1 -1  (3)

where R is the universal gas constant, nv ∈ ℝ is the polytropic 
exponent, MW ∈ ℝ is the molecular weight of the compressed 
gas mixture, Zin∈ ℝ is the inlet compressibility factor while 
Tin∈ ℝ denotes the inlet compressor temperature. 

Consequently, the load sharing optimization problem for the 
parallel arrangement can be formulated as follows: 

 min
{ṁ1,…, ṁNc}

J (mi̇ ) (4a)

     s.t. h(ṁ1,…, ṁNc
) = 0 (4b) 

            g(ṁ1,…, ṁNc
) ≤ 0 (4c)

         ∑ mi̇
Nc
i=1 = ṁstation (4d)

where h ∶ ℝNc → ℝNh    (4b) defines the equality constraints 
imposed by the steady state model equations of the 
compressor. Similarly, g ∶ ℝNc → ℝNg    (4c) defines the surge 
and choke inequality constraints which are formulated to 
prevent unstable compressor operation due to surge or choke 
conditions [5]. Both (4b) and (4c) are further discussed in 
section III and are based on [7]. Finally, (4d) defines an 
additional equality constraint that the sum of the compressor 
mass flowrates must equal the station mass flow rate target, 
ṁstation.  

 
Figure 1. Schematic diagram of the LSO problem applied to three 
compressors arranged in parallel. FC represents the compressor flow 
controllers which actuate a change in the torque, τi , applied to the 
compressors which adjusts the operating speed of the compressors, ωi. ASC 
denotes the Anti-Surge Controllers which are designed to recycle gas flow to 
the compressors to prevent surging. Control signals are represented by dashed 
lines and gas flows are represented by solid lines. 

B. Problem formulation for the model-parameter 
adaptation approach using Gaussian Processes 

 As mentioned in section I, an accurate solution to the 
optimization problem is contingent on an accurate model of 
the compressor performance characteristics: 

 ηi = f(mi,̇ Πi) (5)



  

where f ∶ ℝ → ℝ defines the model of the compressor map 
while ηi defines the model compressor efficiency. Similarly, 
we express the real compressor performance characteristics 
as: 

 ηi = f(mi,̇ Πi) (6)

where f ∶ ℝ → ℝ represents the true function relating the 
compressor mass flowrate and pressure ratio to the efficiency 
of the compressor. The goal of the model-parameter 
adaptation approach is to minimize the difference between 
the true function, f, and the approximation, f, as the system is 
operated and more information about the true behaviour of the 
system is obtained. 

For the reasons outlined in section I, in this paper we 
propose the use of Gaussian Processes to learn the compressor 
performance characteristics. However, it should be noted that 
for our adaptation approach two primary alternatives are 
considered. In the first and main focus of investigation for this 
paper, the GPs are not used to directly learn the compressor 
performance characteristics. Instead, similar to [3], [4] and 
[5], a second order polynomial is used as an initial model for 
the performance characteristics, which we refer to as a prior 
model: 

 ηi
poly = α1 + α2mi̇  + α3Πi + α4mi̇ Πi + α5ṁi

2 + α6Πi
2 (7)

where αj ∈ ℝ are the polynomial coefficients and ηi
poly∈ ℝ is 

the polynomial efficiency.  

As the system is operated and more data is obtained from 
the compressors the difference between the predicted 
efficiency and estimated plant efficiency (which is back 
calculated from the plant measurements using (2) and (3)) up 
to the kth sampling instant can be determined: 

  Δi
k = ηi

k − ηi
poly,k (8)

where ηi
k ∈ ℝk and ηi

poly,k∈ ℝk represent the vectors of 
estimated plant efficiency and efficiency predicted by the 
polynomial up to the kth sampling instant respectively while 
Δi

k ∈ ℝk represents the vector of their difference. 
Consequently, an error function, ∆(mi̇ ,Πi) ∶ ℝ → ℝ, 
represented by a GP can be fitted on the input (ṁi

k,Πi
k) and 

output dataset (Δi
k) where the GP can be thought of as a 

multivariate Gaussian distribution over functions from which 
a function, g ∶ ℝ → ℝ, can be sampled: 

 g(mi̇ ,Πi) ~ GP(m(∙), k(∙,∙)) (9) 

 ∆(mi̇ ,Πi) = m(∙)  (10)

where m(∙) and k(∙,∙) represent the mean function and 
covariance function of the GP trained with the input-output 
dataset. 

Finally, the model efficiency is expressed as the sum of 
the prior model and the fitted error function: 

 ηi(mi̇ ,Πi) = ηi
poly(mi̇ ,Πi) + ∆(mi̇ ,Πi) (11)

As a result, with this approach, the model should approximate 
the plant behaviour if the GP learns the error function 
adequately. The utility of this approach is two-fold. Firstly, 
this approach provides the ability to incorporate prior 
information into the adaptation scheme. Namely, if there 
exists a model of the system in which there is some 
confidence, then this can be used as a prior for the GP i.e. as 
an initial starting point. Secondly, the advantage of using the 
GP as an error function lies in the fact that, as a non-
parametric model, the GP can overcome any structural 
mismatch between the prior parametric model (polynomial in 
this case) and the real plant. This would not be possible if a 
model-parameter adaptation approach was used directly on 
the prior parametric model as a structural mismatch would 
remain if the model structure was inadequate. This is indeed 
the case when a second order polynomial is used to represent 
the complex structure of the compressor map. 

The second focus of investigation uses GPs to directly 
learn the compressor map. That is, no prior model is assumed 
for the compressor map and instead this is learned directly by 
the GPs from data measured during operation relating the 
input (ṁi

k,Πi
k) to the output dataset (ηi

k). This can be 
expressed as:  

 h(mi̇ ,Πi) ~ GP(m(∙), k(∙,∙)) (12) 

 ηi(mi̇ ,Πi) = m(∙) (13)

By having these two different lines of investigation, it is 
possible to examine the effect of different degrees of 
mismatch between the prior model and plant and especially 
the ability of the GPs to overcome this mismatch. 
Additionally, this also allows us to compare the difference in 
performance between a hybrid approach, where a prior model 
is used, and a purely data-driven approach where instead a 
model is learned directly from data.  

III. SIMULATION SET-UP  

Four main sets of cases were simulated in this 
investigation for comparison purposes. Before describing 
each of these cases and the relationship between them, we first 
provide a description of the components which make up the 
general simulation although the exact structure of the 
simulation will vary for each of the cases. Any differences 
will be explained upon discussion of the cases considered.  

The general simulation structure is summarized in Fig. 2. 

 
Figure 2. Block diagram of the simulation set-up used in this study where the 
station target, ṁstation, is sent to the optimization block as well as an updated 
compressor model from the model adaptation block so that the LSO problem 
can be solved. After implementing the calculated set-points, measurements 
from the system are used to update the model in the adaptation block if 
necessary. Station targets change regularly over time.  



  

There are four main components to the simulation which are 
described in the following sections. The simulations were 
performed to mimic a period of three days of operation with 
new station targets being sent at regular intervals.   

A. Station target block 

The station target block defines the compressor station 
mass flowrate targets over the course of three days of 
operation as depicted in Fig. 3. The mass flowrate profiles are 
defined to mimic expected daily gas consumption profiles. 
This includes a ramp up in the station target up to a peak load 
and an eventual ramp down [11] [12]. The station target is 
sent to the optimization block so that the load sharing 
optimization problem can be solved, and the target mass 
flowrate distributed to the compressors accordingly.  

 
Figure 3: Mass flowrate targets for the compressor station defined for three 
days of simulation.  

B. Optimization block 

The optimization block solves the load sharing 
optimization problem presented in Section II. It does this by 
taking the station mass flowrate target ṁstation to impose the 
constraint defined in (4d) and solving the nonlinear 
optimization problem formulated in (4) with the model of the 
compressor map, ηi=f(mi,̇ Πi) defined using GPs. The solution 
of the optimization problem, consisting of the individual 
compressor mass flowrate targets, is then sent as set points to 
the corresponding controllers as shown in Fig. 1. To avoid 
frequent changes of the set points sent to the compressors, the 
optimization is only performed when the station target 
reference entering the optimization block changes.  

As discussed in Section I, the model compressor map 
ηi=f(mi,̇ Πi) and the plant compressor map ηi = f(mi,̇ Πi) 
should exhibit no mismatch in order to ensure the optimum 
obtained from the optimization block corresponds to the true 
optimum of the plant.  

C. Model adaptation block  

At set sampling instants, the model adaptation block takes 
the measurements of mass flowrate, pressure ratio, power, and 
temperature from the compressors to estimate the real plant 

efficiency using (2) and (3). Each of these measurements are 
corrupted with measurement noise at a level similar to that of 
[13]. As discussed in [3] and [8], it is important to ensure that 
model adaptation is only triggered when new data is measured 
i.e. different to what has already been observed. This is 
especially relevant for GPs which exhibit performance issues 
with larger datasets [10].  

For this reason, in the first instance, a Euclidean distance 
metric is used in the model adaptation block to determine 
whether the data measured is similar to any other data in the 
current dataset used to fit the GP. If it is, then the data is 
discarded, and the adaptation method is terminated. 
Otherwise, the data is appended to the current dataset and the 
GP is re-fitted.  

D. Compressor block 

The compressor block consists of a number of 
components which can be inferred from Fig. 1 and are 
described in this section for clarity.  

Firstly, the compressor block contains the compressor 
model which consists of the full set of differential and 
algebraic equations which describes the dynamic and steady-
state behaviour of the compressor. These equations have been 
adapted from [7]. Most importantly, the compressor model 
contains the plant compressor map i.e. ηi = f(mi,̇ Πi). This 
information is not available to any other components of the 
simulation and represents the baseline of the compressor map. 
Fig. 4 depicts the compressor maps for compressor 1, 2 and 3 
respectively. It should be noted that for the purposes of the 
simulation, the efficiencies were scaled such that compressor 
1 was the most efficient compressor, followed by compressor 
2 and 3.  

Secondly, a low-level PI flow controller receives the 
individual compressor mass flowrate target from the 
optimization block as a set-point. This set-point is tracked by 
adjusting the torque applied to the compressor and hence 
adjusting the compressor operating speed.   

Finally, an anti-surge controller acts to ensure stable 
compressor operation by preventing the compressor from 
operating in the surge region [5]. However, the surge and 
choke constraints defined in (4c) have been formulated 
specifically to ensure that surging or choking of the 
compressor is avoided without needing the action of the anti-
surge controller.  

The main components of the simulation described in this 
section have been used in four primary case studies discussed 
in section IV.  

IV. CASES SIMULATED 

The four main sets of cases simulated in this investigation 
are summarized in this section. All the cases were run in 
MATLAB/Simulink and the optimization problem was 
solved using fmincon. 

A. Case 1 

Case 1 simulates the scenario where no plant-model 
mismatch exists. That is, in the optimization block described 



  

in section III.B, the model of the compressor map is identical 
to the plant compressor map defined in section III.D: 

 ηi = ηi = f(mi,̇ Πi) (13)

The purpose of this case is to bound the problem being 
studied by giving a lower bound on the expected power 
consumption i.e. a best case scenario. Consequently, this case 
requires no model adaptation block as a result.  

B. Case 2.1-2.3 

Cases 2.1-2.3 simulate the scenario where a plant-model 
mismatch exists, and this mismatch is not addressed i.e. no 
model parameter adaptation is performed. This is done by 
using second order polynomials of the form of (7) for the 
model of the compressor map in the optimization block. 
Furthermore, several sub-cases are defined where the second 
order polynomials are fitted on limited amounts of real data 
to induce varying degrees of plant-model mismatch. 
Specifically, 2, 5 and 20 points are used in the polynomial 
regression which we define as case 2.1, 2.2 and 2.3 
respectively. Additionally, a further mismatch is induced by 
shifting the efficiency surfaces produced by the resulting 
second order polynomials by a random number. An example 
of this mismatch is demonstrated for compressor 3 for case 
2.1 in Fig. 5. As can be seen, a mismatch exists between the 
plant and model due to the use of only 2 points for the 
polynomial regression as well as the applied shift.  

In the same vein as case 1, cases 2.1-2.3 are intended to 
bound the problem by giving an upper bound on the expected 
power consumption i.e. a set of worst case scenarios. 
Additionally, as will be discussed next, by using different 
amounts of data for the polynomial regression, this allows us 
to investigate the effect of varying degrees of plant-model 
mismatch when the GP error functions are used for cases 3.1-
3.3. In particular, this allows us to test the robustness of the 
GPs to varying degrees of model uncertainty. 

C. Case 3.1-3.3 

Cases 3.1-3.3 define the main focus of investigation of this 
paper. This is the scenario described in section II.B, where the 
second order polynomials of case 2.1, 2.2 and 2.3 are used as 
prior models for GPs which attempt to learn the error between 
the prior model and the plant. Consequently, 3 sub-cases are 
defined: case 3.1, 3.2 and 3.3 which have the second order 
polynomials fitted on 2, 5 and 20 data points as prior models 
respectively. The model of the compressor map used by the 
optimization block is (11), the sum of the GP error function 
and the prior model.  
 

 
Figure 5. A mismatch between the model (orange surface) and the plant (blue 
surface) exists in this case. The mismatch was induced by the applied shift 
and by using only two points to fit the polynomial function from (7). 

D. Case 4 

Case 4 simulates the other scenario described in section 
II.B where no prior model of the compressor map is assumed 

Figure 4. Baseline compressor maps for compressors 1,2 and 3. The efficiencies were scaled to ensure variation amongst the 
compressors with compressor 1 being the most efficient followed by compressor 2 and 3. Black solid line represents the operating 
envelope of the compressors. 



  

and instead this is learned directly from data by the GP as per 
(12) and (13). As a result, the model adaptation block now fits 
the GP directly to the efficiency surface. Similarly, the 
optimization block uses the fitted GP model of the compressor 
map directly. 

V. RESULTS AND DISCUSSION 

Fig. 6 shows the plots of the power consumption of the 
compressor station over three days of simulation for the 
different cases discussed in section IV. In each of the figures, 
the green solid line represents case 1, the best-case scenario 
with no mismatch. Similarly, the coloured solid lines 
represent cases 2.1, 2.2 and 2.3 which act as upper bounds to 
the problem while the dashed coloured lines demonstrate the 
performance of the GP error functions in Fig. 6.1, 6.2 and 6.3 
while Fig. 6.4 exhibits the performance of case 4.  

Fig. 6 shows that the GPs perform well in each of the cases 
where they are employed. The power consumption of these 
cases approaches that of case 1 within only a few set-point 
changes suggesting the GPs are able to learn from the data. 
As expected, as the degree of mismatch decreases from case 
2.1 to case 2.3, the faster cases 3.1-3.3 approach the 
performance of case 1. This is expected because as 
demonstrated in Fig. 5, which exhibits the worst mismatch for 
case 2.1, the GP must learn an error function which 
overcomes this major mismatch. This will only begin to occur 
when a sufficient amount of data is collected from the plant 
such that the error function can be appropriately approximated 
by the GP. Therefore, for case 3.1 (red dashed line) shown in 
Fig. 6.1, there are early periods of operation where this tends 
to the worst-case performance of case 2.1 (red solid line). 
However, after only a few subsequent set-point changes, case 

3.1 approaches the performance of case 1. This highlights the 
robustness and flexibility of using GPs in the model-
parameter adaptation approach. 

 
Figure 7. Total energy consumption of the compressor station for each of the 
cases defined. The performance of case 3.1 demonstrates the adaptive nature 
of GPs as they continually learn from data. 

The adaptive nature of the GPs as they learn more about 
the system as the operation proceeds is best demonstrated 
with Fig. 7. Fig. 7 shows the total energy consumption of the 
compressor station over time for each of the different cases. 
In summary, it shows the cumulative effect of the GPs as they 
continually learn as new data becomes available. In particular, 
the cumulative improvement of case 3.1 exhibits the 

Figure 6. Power consumption of the compressor station over three days of simulation for the different cases discussed in section IV. In each of the figures, 
the green solid line represents case 1, the best-case scenario with no mismatch. Similarly, the coloured solid lines represent cases 2.1, 2.2 and 2.3 which act 
as upper bounds to the problem while the dashed coloured lines demonstrate the performance of the GP error functions in Fig. 6.1, 6.2 and 6.3 while Fig. 6.4 
exhibits the performance of case 4. 



  

favourable properties of GPs which make them amenable for 
use in the model-parameter adaptation approach. Despite a 
major mismatch between the plants and models, the error 
functions represented by the GPs become a better fit to the 
real error functions as more data becomes available. 
Consequently, as shown in Fig. 7, the energy consumption of 
the whole station is driven towards case 1, the best-case 
scenario despite starting near the worst-case scenario of case 
2.1. Alternatively, if the model-parameter adaptation 
approach were to be applied to a parametric model, one might 
expect the cumulative improvement to eventually plateau. 
This is because at some point, with an inadequate model 
structure, no updating of the parameters would minimize the 
remaining structural mismatch as discussed in [8] and [9]. 
However, as non-parametric models, GPs do not have this 
issue. 

The performance of case 4 is particularly insightful. Case 
4 learns the compressor map directly from data and has no 
prior model as a starting point. The results of Fig. 6.4 and Fig. 
7 once again show that the performance of case 4 approaches 
case 1 within a few set-point changes and in fact this occurs 
faster than case 3.1. This suggests that the utility of having a 
prior model is lost if the model used is not able to approximate 
plant behaviour to some extent. This is because, at the start of 
operation, when little to no observations have been made, the 
model of the compressor map when a GP error function is 
used is heavily reliant on the prior model. As a result, if the 
prior model is a poor representation of the plant, as is the case 
for the compressors in case 3.1, the model of the compressor 
map only converges onto the plant compressor map after a 
number of observations have been made. That is, only once 
evidence is collected to suggest that the prior model is a poor 
representation of the plant does the error function represented 
by the GP begin to correct this. This is clearly demonstrated 

by the cumulative improvement of case 3.1 in Fig. 7 and is in 
line with the Bayesian approach adopted by GPs as discussed 
in [10]. This is a conclusion supported by previous studies 
which attempt to incorporate prior knowledge into a hybrid 
modelling scheme [14] [15].  

This concept is further accentuated in Fig. 8. Fig. 8 shows 
the evolution of the model of the compressor map for 
compressor 2 for case 3.1 as more data is observed over time. 
The red surface represents the prior polynomial model, while 
the green surface represents the plant compressor map. The 
adaptive model compressor map, consisting of the prior 
model and the error function, is represented by the blue 
surface.  Finally, the operating points are represented in black. 
At the start of operation, shown in Fig. 8.1, as only few 
operating points (black) have been observed, the model 
compressor map (blue) locally approximates the plant 
compressor map (green) near these points.  On the other hand, 
far away from these operating points, the model compressor 
map is heavily biased by the prior model (red) and so 
approximates this polynomial model instead. However, at the 
end of the simulation as shown by Fig. 8.2, where a significant 
amount of data has been observed, the model compressor map 
becomes a better global approximation to the plant 
compressor map but with some local differences biased by the 
prior model where no observations have been made. This 
demonstrates that despite the major mismatch initially, after 
data is collected, this mismatch is mostly corrected especially 
along the points of operation for the compressor. 
Additionally, it will be noticed that the operating points of the 
compressor lie on a curve spanning the compressor map. This 
is referred to as the system resistance curve and defines the 
relationship between pressure and flow within the system. For 
this reason, as only points along this curve are observed, the 
GPs must extrapolate outside of this range. Consequently, 

Figure 8. Evolution of the model compressor map (blue surface) for compressor 2 in case 3.1 over time as more data is measured from the system. The red 
surface represents the prior polynomial model, the green surface represents the plant compressor map and the model compressor map, consisting of the prior 
model and the error function, is represented by the blue surface. Finally, the operating points are represented in black. 



  

having a good prior model can ensure good global 
approximation of the plant compressor map while, more 
importantly for optimization, the GP error function can ensure 
good local approximation along the resistance curve. This is 
the main requirement of the model when solving the 
optimization problem formulated in (4) as the constraints 
defined in (4b) guarantee that the solution will lie on this 
curve. Therefore, having a good local approximation along 
the resistance curve, which the GP error function provides, 
ensures that an accurate solution to the optimization problem 
can be found. However, should the resistance curve change 
during operation, for example due to equipment changes, then 
the GPs would be able to adapt accordingly. In this case they 
would be able to learn a better global approximation of the 
true error function as more of the compressor map would be 
operated, further highlighting the flexibility of GPs. 

Finally, in this paper, although we have managed to apply 
GPs to the problem of load sharing optimization successfully, 
as mentioned in section III.C, GPs may struggle to scale for 
larger problem sets. In our case, this is a relatively small-scale 
problem from the perspective of the dimensionality and 
amount of data. Even with more compressors, scalability 
would not be an issue as an additional compressor requires 
only an additional GP. Similarly, the Euclidean distance 
metric used in the simulation as described in section III.C 
ensures that the size of the dataset used to train the GPs does 
not become excessive. Therefore, one potential area of further 
investigation lies in the scalability of GPs to larger problems 
where datasets will likely grow significantly. It would be 
worthwhile as future work to investigate the application of 
GPs to large scale problems and in particular the use of 
approximation methods such as sparse GPs to deal with the 
problem of scalability [10] [16]. More specifically, the 
favourable properties of GPs could be exploited for large-
scale real-time optimization problems if the issue of 
scalability can be resolved.  

VI. CONCLUSION 

In this paper, we have used Gaussian Processes in the 
model-parameter adaptation approach to solve the load 
sharing optimization problem for compressor stations. In 
doing so, the results in this paper give strong evidence that 
GPs are robust in the face of varying degrees of model 
uncertainty and mismatch. In particular, due to their flexible 
nature as non-parametric models, we show that they would be 
more suited to the model-parameter adaptation approach than 
parametric models which may retain structural mismatch with 
the plant. This supports the conclusions made by [9]. 
Additionally, the results of case 4 also support a purely data-
driven approach when an adequate prior model of the system 
does not exist. However, as demonstrated by the results of 
case 3.2 and particularly 3.3, where a prior model exists, for 
which there is relative confidence, then its use can be 
beneficial. In such a case, the GP plays the role of minimizing 
any structural mismatch which may exist between the prior 
model and the plant. This could be a useful area of 
exploitation for systems in which current models are 
sufficient but perhaps miss some important physics which are 
not fully understood and thus not being captured. 
Consequently, the GP can be used in a way to learn the 
missing model structure from data. Finally, although this 

paper focused on the application of GPs to the load sharing 
optimization problem applied to compressor stations, there is 
nothing to suggest that GPs could not be used for a more 
general class of problems found in the real-time optimization 
literature. Additionally, there are many other applications 
which rely on the modelling of complex performance curves 
for the control and optimization of machinery and processes. 
The approaches used in this paper could be utilized in such 
applications. 
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