12 research outputs found

    Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators

    Get PDF
    The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner (tm) s syndrome and in phenotypic differences between the sexes in health and disease

    Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models.

    No full text
    Mutations in the BRAF and KRAS genes occur in approximately 1% to 2% and 20% to 30% of non-small-cell lung cancer patients, respectively, suggesting that the mitogen-activated protein kinase (MAPK) pathway is preferentially activated in lung cancers. Here, we show that lung-specific expression of the BRAF V600E mutant induces the activation of extracellular signal-regulated kinase (ERK)-1/2 (MAPK) pathway and the development of lung adenocarcinoma with bronchioloalveolar carcinoma features in vivo. Deinduction of transgene expression led to dramatic tumor regression, paralleled by dramatic dephosphorylation of ERK1/2, implying a dependency of BRAF-mutant lung tumors on the MAPK pathway. Accordingly, in vivo pharmacologic inhibition of MAPK/ERK kinase (MEK; MAPKK) using a specific MEK inhibitor, CI-1040, induced tumor regression associated with inhibition of cell proliferation and induction of apoptosis in these de novo lung tumors. CI-1040 treatment also led to dramatic tumor shrinkage in murine lung tumors driven by a mutant KRas allele. Thus, somatic mutations in different signaling intermediates of the same pathway induce exquisite dependency on a shared downstream effector. These results unveil a potential common vulnerability of BRAF and KRas mutant lung tumors that potentially affects rational deployment of MEK targeted therapies to non-small-cell lung cancer patients

    Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance

    No full text
    The epidermal growth factor receptor (EGFR) secondary kinase domain T790M non–small cell lung cancer (NSCLC) mutation enhances receptor catalytic activity and confers resistance to the reversible tyrosine kinase inhibitors gefitinib and erlotinib. Currently, irreversible inhibitors represent the primary approach in clinical use to circumvent resistance. We show that higher concentrations of the irreversible EGFR inhibitor CL-387,785 are required to inhibit EGFR phosphorylation in T790M-expressing cells compared with EGFR mutant NSCLC cells without T790M. Additionally, CL-387,785 does not fully suppress phosphorylation of other activated receptor tyrosine kinases (RTK) in T790M-expressing cells. These deficiencies result in residual Akt and mammalian target of rapamycin (mTOR) activities. Full suppression of EGFR-mediated signaling in T790M-expressing cells requires the combination of CL-387,785 and rapamycin. In contrast, Hsp90 inhibition overcomes these limitations in vitro and depletes cells of EGFR, other RTKs, and phospho-Akt and inhibits mTOR signaling whether or not T790M is present. EGFR-T790M– expressing cells rendered resistant to CL-387,785 by a kinase switch mechanism retain sensitivity to Hsp90 inhibition. Finally, Hsp90 inhibition causes regression in murine lung adenocarcinomas driven by mutant EGFR (L858R) with or without T790M. However, efficacy in the L858R-T790M model requires a more intense treatment schedule and responses were transient. Nonetheless, these findings suggest that Hsp90 inhibitors may be effective in T790M-expressing cells and offer an alternative therapeutic strategy for this subset of lung cancers

    HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy

    No full text
    Mutations in the HER2 kinase domain have been identified in human clinical lung cancer specimens. Here we demonstrate that inducible expression of the most common HER2 mutant (HER2YVMA) in mouse lung epithelium causes invasive adenosquamous carcinomas restricted to proximal and distal bronchioles. Continuous expression of HER2YVMA is essential for tumor maintenance, suggesting a key role for HER2 in lung adenosquamous tumorigenesis. Preclinical studies assessing the in vivo effect of erlotinib, trastuzumab, BIBW2992, and/or rapamycin on HER2YVMA transgenic mice or H1781 xenografts with documented tumor burden revealed that the combination of BIBW2992 and rapamycin is the most effective treatment paradigm causing significant tumor shrinkage. Immunohistochemical analysis of lung tumors treated with BIBW2992 and rapamycin combination revealed decreased phosphorylation levels for proteins in both upstream and downstream arms of MAPK and Akt/mTOR signaling axes, indicating inhibition of these pathways. Based on these findings, clinical testing of the BIBW2992/rapamycin combination in non-small cell lung cancer patients with tumors expressing HER2 mutations is warranted

    Independent specialization of the human and mouse X chromosomes for the male germ line

    Get PDF
    We compared the human and mouse X chromosomes to systematically test Ohno's law, which states that the gene content of X chromosomes is conserved across placental mammals. First, we improved the accuracy of the human X-chromosome reference sequence through single-haplotype sequencing of ampliconic regions. The new sequence closed gaps in the reference sequence, corrected previously misassembled regions and identified new palindromic amplicons. Our subsequent analysis led us to conclude that the evolution of human and mouse X chromosomes was bimodal. In accord with Ohno's law, 94–95% of X-linked single-copy genes are shared by humans and mice; most are expressed in both sexes. Notably, most X-ampliconic genes are exceptions to Ohno's law: only 31% of human and 22% of mouse X-ampliconic genes had orthologs in the other species. X-ampliconic genes are expressed predominantly in testicular germ cells, and many were independently acquired since divergence from the common ancestor of humans and mice, specializing portions of their X chromosomes for sperm production.National Institutes of Health (U.S.)Howard Hughes Medical Institut
    corecore