12 research outputs found

    Vrabas. The Effect of Natural and Artificial Grass on Sprinting Performance in Young Soccer Players

    Get PDF
    Abstract: The sprint performance on natural and artificial grass of 5 th generation was assessed. Sixty eight young male soccer players, which were divided in two groups according to their age [children (n=36; 12.1±0.5y) and adolescents (n=32; 14.2±0.4y)], performed 30-m sprint tests with and without handling the ball on natural and artificial grass. The performance was recorded during 0-10m, 10-30m, and 0-30m running distances. It was found that children were significantly faster during 0-10m running distance on the artificial compared to natural grass when handling the ball while adolescents revealed no differences in sprint performance between the surfaces irrespectively of the ball condition. In running distances 10-30m and 0-30m, children were significant faster in the artificial compared to the natural grass either with or without ball, while the adolescents were significantly faster in the artificial grass only without handling the ball. Children run faster on artificial than natural grass while adolescent soccer players are faster in artificial grass when they do not have to handle the ball. It is clear that children should be more careful when play soccer on artificial grass because the ball is moving faster and greater skill is needed in order to avoid injuries

    Defining the scope of the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet): a bottom-up and One Health approach

    Get PDF
    Background Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. Objectives To define the combinations of animal species/production types/age categories/bacterial species/specimens/antimicrobials to be monitored in EARS-Vet. Methods The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the ECDC and the European Food Safety Authority (EFSA). Results EARS-Vet plans to monitor AMR in six animal species [cattle, swine, chickens (broilers and laying hens), turkeys, cats and dogs], for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Molecular data detecting the presence of ESBLs, AmpC cephalosporinases and methicillin resistance shall be collected too. Conclusions A preliminary EARS-Vet scope was defined, with the potential to fill important AMR monitoring gaps in the animal sector in Europe. It should be reviewed and expanded as the epidemiology of AMR changes, more countries participate and national monitoring capacities improve.Peer reviewe

    Pilot testing the EARS-Vet surveillance network for antibiotic resistance in bacterial pathogens from animals in the EU/EEA

    Get PDF
    IntroductionAs part of the EU Joint Action on Antimicrobial Resistance (AMR) and Healthcare-Associated Infections, an initiative has been launched to build the European AMR Surveillance network in veterinary medicine (EARS-Vet). So far, activities included mapping national systems for AMR surveillance in animal bacterial pathogens, and defining the EARS-Vet objectives, scope, and standards. Drawing on these milestones, this study aimed to pilot test EARS-Vet surveillance, namely to (i) assess available data, (ii) perform cross-country analyses, and (iii) identify potential challenges and develop recommendations to improve future data collection and analysis.MethodsEleven partners from nine EU/EEA countries participated and shared available data for the period 2016–2020, representing a total of 140,110 bacterial isolates and 1,302,389 entries (isolate-antibiotic agent combinations).ResultsCollected data were highly diverse and fragmented. Using a standardized approach and interpretation with epidemiological cut-offs, we were able to jointly analyze AMR trends of 53 combinations of animal host-bacteria–antibiotic categories of interest to EARS-Vet. This work demonstrated substantial variations of resistance levels, both among and within countries (e.g., between animal host species).DiscussionKey issues at this stage include the lack of harmonization of antimicrobial susceptibility testing methods used in European surveillance systems and veterinary diagnostic laboratories, the absence of interpretation criteria for many bacteria–antibiotic combinations of interest, and the lack of data from a lot of EU/EEA countries where little or even surveillance currently exists. Still, this pilot study provides a proof-of-concept of what EARS-Vet can achieve. Results form an important basis to shape future systematic data collection and analysis

    Building the National Antimicrobial Resistance Surveillance Network in Animals in Greece: A “One Health” Approach

    No full text
    It is widely accepted that, in order to prevent and control antimicrobial resistance (AMR), surveillance systems across human, animal and environmental sectors need to be integrated, in a One Health approach. Currently, in Europe, there are surveillance networks established only for the human and food sector and, until now, there has been no organized effort to monitor AMR in bacterial pathogens derived from diseased animals in Europe. Since 2017, efforts to fill this gap have taken place by the European Antimicrobial Resistance Surveillance network in a veterinary medicine (EARS-Vet) initiative, included in the EU Joint Action on AMR and Healthcare-Associated Infections (EU-JAMRAI). EARS-Vet is designed to complement and integrate with existing European monitoring systems for AMR as well as constitute a European network of national monitoring systems. As Greece has no national AMR surveillance system for pathogens of animal origin currently in place, in the context of the development of EARS-Vet, an initiative took place for the organization of such a system by competent agencies and other stakeholders. In this article, the steps to organize a first AMR national surveillance network in Greece are presented and a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis is performed to present main characteristics of the approach implemented

    Molecular Characterization of <i>Escherichia coli</i> Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse

    No full text
    The first prospective surveillance of ESBL and colistin-resistant Escherichia coli recovered from sick pigs from a slaughterhouse in Central Greece aimed to investigate the spread of relevant genetic elements. In February 2021, 25 E. coli isolates were subjected to antimicrobial susceptibility testing using disk diffusion and broth microdilution techniques. PCR screening was conducted to identify ESBLs and mcr genes. Additional assays, encompassing mating-out procedures, molecular typing utilizing Pulsed-Field Gel Electrophoresis, multilocus sequence typing analysis, and plasmid typing, were also conducted. A 40% prevalence of ESBLs and an 80% prevalence of MCR-1 were identified, with a co-occurrence rate of 32%. The predominant ESBL identified was CTX-M-3, followed by SHV-12. Resistance to colistin, chloramphenicol, cotrimoxazol, and ciprofloxacin was detected in twenty (80%), fifteen (60%), twelve (48%), and four (16%) isolates, respectively. All blaCTX-M-3 harboring plasmids were conjugative, belonging to the incompatibility group IncI1, and approximately 50 kb in size. Those carrying blaSHV-12 were also conjugative, classified into incompatibility group IncI2, and approximately 70 kb in size. The mcr-1 genes were predominantly located on conjugative plasmids associated with the IncX4 incompatibility group. Molecular typing of the ten concurrent ESBL and MCR-1 producers revealed seven multilocus sequence types. The heterogeneous population of E. coli isolates carrying resistant genes on constant plasmids implies that the dissemination of resistance genes is likely facilitated by horizontal plasmid transfer

    Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet)

    Get PDF
    The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values

    Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet)

    Get PDF
    The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values

    Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet)

    No full text
    The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values

    Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet)

    No full text
    The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values
    corecore