435 research outputs found

    Biology of barley shoot fly Delia flavibasis Stein (Diptera: Anthomyiidae) on resistant and susceptible barley cultivars

    Get PDF
    The biology of barley shoot fly Delia flavibasis was studied using resistant (Dinsho and Harbu) and susceptible (Holker) barley cultivars at Sinana Agricultural Research Center, Ethiopia. A higher number of eggs was laid on Holker (17 eggs/female) than on Dinsho (11 eggs/female) or Harbu (12 eggs/female). However, there were no differences between cultivars in preoviposition and total reproductive periods. The shortest time required to complete larval, pupal and total developmental stages from egg to adult emergence occurred when the insect was reared on the cultivar Holker. Pupal weight, adult emergence and adult longevity did not differ between cultivars. The female to male sex ratio was 1:1. This study enabled us to understand the duration of each of the life stages of D.flavibasis, which will undoubtedly aid researchers and growers to design a sustainable management strategy against barley shoot fly

    Effectiveness analysis of resistance and tolerance to infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tolerance and resistance provide animals with two distinct strategies to fight infectious pathogens and may exhibit different evolutionary dynamics. However, few studies have investigated these mechanisms in the case of animal diseases under commercial constraints.</p> <p>Methods</p> <p>The paper proposes a method to simultaneously describe (1) the dynamics of transmission of a contagious pathogen between animals, (2) the growth and death of the pathogen within infected hosts and (3) the effects on their performances. The effectiveness of increasing individual levels of tolerance and resistance is evaluated by the number of infected animals and the performance at the population level.</p> <p>Results</p> <p>The model is applied to a particular set of parameters and different combinations of values. Given these imputed values, it is shown that higher levels of individual tolerance should be more effective than increased levels of resistance in commercial populations. As a practical example, a method is proposed to measure levels of animal tolerance to bovine mastitis.</p> <p>Conclusions</p> <p>The model provides a general framework and some tools to maximize health and performances of a population under infection. Limits and assumptions of the model are clearly identified so it can be improved for different epidemiological settings.</p

    Trade-off between disease resistance and crop yield: a landscape-scale mathematical modelling perspective.

    Get PDF
    The deployment of crop varieties that are partially resistant to plant pathogens is an important method of disease control. However, a trade-off may occur between the benefits of planting the resistant variety and a yield penalty, whereby the standard susceptible variety outyields the resistant one in the absence of disease. This presents a dilemma: deploying the resistant variety is advisable only if the disease occurs and is sufficient for the resistant variety to outyield the infected standard variety. Additionally, planting the resistant variety carries with it a further advantage in that the resistant variety reduces the probability of disease invading. Therefore, viewed from the perspective of a grower community, there is likely to be an optimal trade-off and thus an optimal cropping density for the resistant variety. We introduce a simple stochastic, epidemiological model to investigate the trade-off and the consequences for crop yield. Focusing on susceptible-infected-removed epidemic dynamics, we use the final size equation to calculate the surviving host population in order to analyse the yield, an approach suitable for rapid epidemics in agricultural crops. We identify a single compound parameter, which we call the efficacy of resistance and which incorporates the changes in susceptibility, infectivity and durability of the resistant variety. We use the compound parameter to inform policy plots that can be used to identify the optimal strategy for given parameter values when an outbreak is certain. When the outbreak is uncertain, we show that for some parameter values planting the resistant variety is optimal even when it would not be during the outbreak. This is because the resistant variety reduces the probability of an outbreak occurring.Bakala Foundation, Trinity College CambridgeThis is the author accepted manuscript. The final version is available from Royal Society Publishing via http://dx.doi.org/10.1098/rsif.2016.045

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley

    Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley

    Get PDF
    The genetic basis of several different components of resistance to Rhynchosporium secalis in barley was investigated in a mapping population derived from a cross between winter and spring barley types. Both the severity of visual disease symptoms and amount of R. secalis DNA in leaf tissues were assessed in field trials in Scotland in the 2007/2008 and 2008/2009 growing seasons. Relative expression of symptoms was defined as the residual values from a linear regression of amount of R. secalis DNA against visual plot disease score at GS 50. Amount of R. secalis DNA and visual disease score were highly correlated traits and identified nearly identical QTL. The genetic control of relative expression of symptoms was less clear. However, a QTL on chromosome 7H was identified as having a significant effect on the expression of visual disease symptoms relative to overall amount of R. secalis colonisationPeer reviewedFinal Accepted Versio

    Periodic Host Absence Can Select for Higher or Lower Parasite Transmission Rates

    Get PDF
    This paper explores the effect of discontinuous periodic host absence on the evolution of pathogen transmission rates by using Ro maximisation techniques. The physiological consequence of an increased transmission rate can be either an increased virulence, i.e. there is a transmission-virulence trade-off or ii) a reduced between season survival, i.e. there is a transmission-survival trade-off. The results reveal that the type of trade-off determines the direction of selection, with relatively longer periods of host absence selecting for higher transmission rates in the presence of a trade-off between transmission and virulence but lower transmission rates in the presence of a trade-of between transmission and between season survival. The fact that for the transmission-virulence trade-off both trade-off parameters operate during host presence whereas for the transmission-survival trade-off one operates during host presence (transmission) and the other (survival) during the period of host absence is the main cause for this difference in selection direction. Moreover, the period of host absence seems to be the key determinant of the pathogens transmission rate. Comparing plant patho-systems with contrasting biological features suggests that airborne plant pathogen respond differently to longer periods of host absence than soil-borne plant pathogens
    corecore