
Predictability and 
Nonlinear Modelling 
• 
In 
Natural Sciences and 
Economics 

edited by 

J. Grasman 
Department of Mathematics, 
Agricultural University, 

· Wageningen, The Netherlands 

and 

G. van Straten 
Department of Agricultural Engineering and Physics, 
Agricultural University, 
Wageningen, The Netherlands 

KLUWER ACADEMIC PUBLISHERS 
I BOSTON I LONDON 





UNCERTAINTY OF PREDICTIONS IN SUPERVISED PEST CONTROL 
IN WINTER WHEAT: ITS PRICE AND CAUSES 

WALTER A. H. ROSSING', RICHARD A. DAAMEN2
, 

ELIGIUS M.T. HENDRIX3 & MICHIEL J.W. JANSEN4•5 

1 Wageningen Agricultural University, Dept. Theoretical Production Ecology, P.O. Box 
430, 6700 AK Wageningen, The Netherlands; 2 Research Institute for Plant Protection; 3 

WAU, Dept. Mathematics; 4 DLO-Agricultural Mathematics Group; 5 DLO-Centre for 
Agrobiological Research. 

e-mail: rossing@rd.wau.nl 

Summary 

In supervised control, the economically optimal timing of pesticide application is equiva­
lent with the level of pest attack where projected costs of immediate control just equal 
projected costs of no control. This level is called the damage threshold. Uncertainty about 
the costs of different strategies of chemical control of aphids (especially Sitobion. avenae) 
and brown rust (Pucdnia recondita) is calculated with a deterministic model. Sources of 
uncertainty, which comprise estimates of initial state and parameters, future weather, and 
white noise, are modelled as random inputs. Consequences of uncertainty for damage 
thresholds are analyzed. The relative importance of various sources of uncertainty for 
prediction uncertainty is calculated using a novel procedure. 

Stochastic damage thresholds are lower than those calculated using average values for 
sources of uncertainty. Thus, uncertainty causes earlier chemical control of pests and 
higher input of pesticides. Due to the strongly skewed frequency distribution of costs of no 
control, the probability of positive return on pesticide expenditure at the stochastic damage 
thresholds is only 30%. White noise in the relative growth rates of both aphids and brown 
rust is found to be the most important source of uncertainty. More accurate estimation of 
parameters and initial estimates in the current model results in marginal reduction of 
prediction uncertainty only. Reduction of prediction uncertainty and concomitant reduction 
of recommended pesticide use requires reduction of the uncertainty associated with no 
chemical control by adopting a different approach to prediction of the population dynamics 
of aphids and brown rust. 

Keywords Uncertainty analysis, Monte Carlo methods, non-linear systems, crop protection 

1. Introduction 

An important objective of pesticide application is insurance against major crop losses 
which occur with low probability (Norton & Mumford, 1 <JR3; Tait, 1 <JR7; Pannell, 19<) 1 ). 
In many pathosystems pesticides are very effective in decreasing densities of growth 
reducing organisms. Although crop loss may occur even at low densities, the extent of loss 
as well as the variation in loss is usually smaller than at high pest densities. A second, 
potentially conflicting objective of pesticide application is maximization of (expected) 
return on expenditure (Norton & Mumford, 1 <JR3; Rossing et a/., 1 <J<J3a). Extreme 



emphasis on insurance occurs when spraying is carried out at regular time intervals 
without reference to the presence of or damage by the pest. Examples of such prophylactic 
control strategies are found in control of late blight (Phytophthora infestans) in potato and 
fire blight (Botrytis spp.) in various flowerbulb species in the Netherlands. 

Supervised control represents a concept of pest management in which maximization of 
returns on expenditure is emphasized. The level of pest attack at which the projected costs 
of chemical control just equal the projected costs of no control is called the damage 
threshold and represents the optimal time of pesticide application. Costs of decision 
alternatives are usually predicted with mathematical models. Recommended action is 
passed to farmers in decision support systems. 

ln this paper the importance of uncertainty for supervised control of aphids (especially 
Sitobion avenae) and brown rust (Puccin.ia recon.dita) in winter wheat in the Netherlands 
is investigated. Two questions are addressed. Firstly, to what extent do the damage 
thresholds for aphids and brown rust change when uncertainty about various components 
in the mathematical models is taken into account, or, what is the price of uncertainty. 
Secondly, which sources of uncertainty contribute most to uncertainty about costs 
associated with a control decision and how can uncertainty about the costs be reduced 
most effectively. 

2. Resear·ch appr·oach 

2.1 Decision model 

A deterministic simulation model is used to predict costs of spray strategies at given initial 
temperature sum and initial levels of pest attack in a winter wheat field in the Netherlands. 
A spray strategy consists of a time series of decisions on chemical control of aphids, 
brown rust or both with fixed time interval of one week. Costs of a strategy comprise the 
monetary equivalent of yield loss due to pest attack plus the costs of eventual chemical 
control. 

The model consists of submodels describing crop development, population dynamics 
and damage per unit of pest density. Relations in the model are based on empirical data 
collected during several years and experiments. Crop development is calculated as a 
function of temperature sum above a developmental threshold of 6 ·c, accumulated from 
crop development stage pseudo-stem elongation (DC 30, Zadoks et al., 1974). 

The submodel on population dynamics is initialized with field observations on aphids 
and brown rust incidences, i.e. percentage of sample units containing the pest. ln the 
submodel incidence is transformed into density, which is assumed to increase exponential­
ly with time. The relative growth rate of the aphid population is a function of crop 
development stage. For brown rust the relative growth rate is constant. Aphid-specific 
pesticides reduce the population to XS% of its pre-spray density and arrest population 
increase for 12 days after application. In contrast, brown rust specific pesticides do not 
affect the population present and arrest population increase during I X days. Damage per 
pest-unit decreases with crop development stage for aphids and is constant throughout the 
season for brown rust. A maximum level- of damage is imposed for both pests. A 
schematic representation of the model is shown in Fig. I. Details are given in Rossing et 
al. (1993b). 
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Fi;:ure 1. Schematic outline of the decision model. 
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Uncertainty is modelled as random inputs into the model. Four categories of uncertainty 
are distinguished (Table 1 ). Parameters were estimated using field data and regression, the 
variance-covariance matrix providing a measure of· uncertainty. Residual variance was 
ascribed to measurement effects and was disregarded for prediction. In some data sets the 
measurement variance could be quantified. In those cases the surplus residual variance was 
ascribed to natural variability and was included in the model as mutually independent, 
identically distributed normal variates. This source of uncertainty will be called white 
noise. Uncertainty about initial incidences of aphids and brown rust was modelled as 
binomial distributions with parameters depending on the incidence estimates and the 
sample sizes. Uncertainty about future average daily temperature was described by 3fi 
years of daily minimum and maximum temperature measured in Wageningen between 
1 <)54 and 1 <)<)(), 

The categories parameters and estimates of the initial state represent sources of 
controllable uncertainty, since uncertainty may be reduced by collecting additional data. 
Uncertainty about future average daily temperature and white noise represents uncon­
trollable uncertainty, at least for a given structu~·e of the model. 



Table 1. Sources of uncertainty in the decision model. 

Category 

Estimates of 
initial state 

Parameters 

Gaussian 
white noise 

Component 

· incidence 
· temperature sum 

various 

· relative growth rate 
· incidence-density 

transformation 
· temperature sum - crop 

development stage 

Distribution 

binomial 
_a 

(multivariate) normal. beta 

normal 

normal 

transformation normal 

Future average historic data (36 years) 
daily temperature 

a Temperature sum is assumed to be known with negligible uncertainty. 

2.2 Partitioning of model output uncertainty 

The contribution of various sources of uncertainty in the model to uncertainty about costs 
of a spray strategy is calculated using the procedure described by Jansen et a!. (I <)<)3). 
Uncertainty about model output is characterized by its variance. Sources of uncertainty are 
combined in Q groups which are mutually independent. ln successive Monte Carlo runs 
new realizations of independent groups of variates are drawn by simple random sampling 
from the appropriate distributions, processing one group per run. After Q runs the values 
of all groups have been changed once, and the first cycle is completed. In total M cycles 
are made. Differences in model output between consecutive runs are caused by the 
uncertainty about one group of variates, while differences between runs i and i+Q-1 are 
due to uncertainty about all groups except one. This procedure which was termed winding 
stairs sampling, allows estimation of the full variance of mode output using the indepen­
dent model outputs Q runs apart. The contribution of a group of sources of uncertainty is 
estimated as either it~ top variance, the reduction in total variance resulting from removal 
of uncertainty about the group, or its bottom variance, the variance remaining when 
uncertainty about all othbr groups is removed. Calculation of top variance is useful for 
groups of variates containing controllable uncertainty, i .c. parameters and estimates of the 
initial state. The top variance represents the maximum improvement of prediction accuracy 
possible for the given model structure. For sources of uncontrollable uncertainty the 
bottom variance is a more useful measure of uncertainty. It represents the minimum model 
accuracy that has to be accepted. 

3. Results and discussion 

3.1 The price of uncertainty 

The damage thresholds for aphids and brown rust in Fig. 2 which are calculated using the 
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Figure 2. Damage thresholds for aphids (A) and brown rust (B) according the determinis­
tic version of the decision model ( - • - ) and the stochastic version, run with M = 500 
(.- -). 

decision model with random inputs are referred to as stochastic damage thresholds. Also 
shown are deterministic damage thresholds calculated with 
average values of inputs. The stochastic damage thresholds are consistently lower than the 
deterministic thresholds. reflecting the convexity of the decision model. 

The size of the difference between deterministic and stochastic damage thresholds is a 
measure for the price that has to be paid for uncertainty. Due to uncertainty pesticides are 
applied at lower pest incidences, leading to on average higher expenditure on pesticide 
input and a larger burden for the environment than would be economical with perfect 
information. 

In Fig. 3 frequency distributions of costs associated with no chemical control at any 
time (NC) and immediate chemical control (IC) are shown for a single stochastic damage 
threshold. Potential costs associated with NC range between almost 0 Dfl ha·' and 1200 
Dfl ha- 1

, with a 90%-percentile of 79o Dfl ha- 1 (Fig. 3a). The distribution is strongly 
skewed to the right. In contrast, the <)()lJ'o-percentile for IC is 214 Dfl ha·' (Fig. 3b ). The 
lower cost threshold of 1 R5 Dfl ha·' is due to the fixed costs of a control operation. 

By definition the expected value of the difference in costs between NC and IC (Fig. 4) 
equals zero, since the initial state represents a stochastic damage threshold. Counter-intuiti­
vely, the probability that costs of IC are less than costs of NC is 30%, rather than the 
intuitive 50%. In other words, although on average immediate chemical control is an 
economically rational decision at initial incidences equal to or higher than the stochastic 
damage threshold, the majority of pesticide applications at stochastic damage thresholds 
are ineffective. The low probability of economic success is caused by the strong skewness 
of the distribution of costs of no control. This result holds for all stochastic damage 
thresholds, with little variation in the probability of positive return on expenditure 
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(Rossing et at., 1993a) and warrants analysis of the causes of uncertainty about costs of 
NC. 

3;2 Causes of uncertainty about costs of no control 

In Table 2 the contribution of the various categories of uncertainty to uncertainty about 
predicted costs of no control of aphids and brown rust is shown for one stochastic damage 
threshold. Results at other damage thresholds are comparable (Rossing eta/., l993c). The 
analysis was carried out in several steps, in each step disaggregating the sources of 
uncertainty. In the first step only controllable and uncontrollable sources of uncertainty are 
distinguished. Both for aphids and brown rust uncontrollable uncertainty was found to 
contribute most to total prediction 
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Figure 3. Freq'uency distributions of costs of no chemical control (A) and immediate 
chemical control of aphids and brown rust jointly (B) in 500 Monte Carlo runs. Initial 
state of the system: temperature sum 200 days, equivalent with DC±4 (se), aphid 
incidence 5% of 100 tillers, brown rust incidence 2% of 160 leaves. Arrows indicate the 
0.90-quantile (P0,911) or the expected value (E()) of costs. 



uncertainty. Further analysis shows that among the sources of uncontrollable uncertainty 
white noise is far more important than predicted temperature. White noise in the relative 
growth rates of the pests represents the major source of 

Table 2. Expected contribution to model output variance of various sources of uncert­
ainty, as percentage of the variance of the full modeL aphids and brown rust separately. 
Initial states: 25% aphids, Wfo brown rust, crop 225 oday. No chemical control at any time. 

Source of uncertainty 

Parameter & initial incidence estimate 
White noise in relative growth rate 
White noise in crop development 
White noise in initial density 
Future temperature 

'estimate based on top variance 
b estimate based on bottom variance 
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Contribution (%) 
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57' 
2b 

13b 
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FiJ?ure 4. Cumulative relative frequency distribution of the difference of costs of no 
control and immediate chemical control (NC minus IC) in 500 Monte Carlo runs. For 
initial state of the system, see caption to Figure 3. The arrow indicates the expected value 
(E()) of the difference (NC minus IC). 
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uncertainty (Table 2). Thus, reduction of uncertainty about predicted costs of NC calls for 
alternative submodels describing pest population dynamics, rather than better determina­
tion of parameters and initial conditions. 

3.3 Conclusions 

This paper focussed on identification and quantification of sources of uncertainty and 
evaluation of the consequences for prediction uncertainty in pest control. The results of the 
analy.sis show that disregarding uncertainty will lead to wrong recommendations to 
farmers. The possibilities for improving the prediction within the constraints of the current 
structure of the model are nearly exhausted. Further improvement will require new 
concepts to be included into the model, especially concerning prediction of population 
dynamics. Major improvements may be expected when field-specific factors affecting 
relative growth rates will be taken into account, such as age distribution of the brown rust 
population and mortality by predators and parasites in the aphid population. 

For the purpose of decision support the uncertainty in the model predictions has to be 
accepted. Rather than ignoring uncertainty or arbitrarily adjusting deterministic results as 
is done currently in many decision support systems, measures should be designed to assess 
the degree to which the objectives of pest control, return on expenditure and insurance, are 
satisfied by various decision strategies. We have proposed such framework for supporting 
pest control decisions under uncertainty elsewhere (Rossing et a/., 1 <J<J3a). 
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