32 research outputs found

    Inference of transcriptional regulation using gene expression data from the bovine and human genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression is in part regulated by sequences in promoters that bind transcription factors. Thus, co-expressed genes may have shared sequence motifs representing putative transcription factor binding sites (TFBSs). However, for agriculturally important animals the genomic sequence is often incomplete. The more complete human genome may be able to be used for this prediction by taking advantage of the expected evolutionary conservation in TFBSs between the species.</p> <p>Results</p> <p>A method of <it>de novo </it>TFBS prediction based on MEME was implemented, tested, and validated on a muscle-specific dataset.</p> <p>Muscle specific expression data from EST library analysis from cattle was used to predict sets of genes whose expression was enriched in muscle and cardiac tissues. The upstream 1500 bases from calculated orthologous genes were extracted from the human reference set. A set of common motifs were discovered in these promoters. Slightly over one third of these motifs were identified as known TFBSs including known muscle specific binding sites. This analysis also predicted several highly statistically significantly overrepresented sites that may be novel TFBS.</p> <p>An independent analysis of the equivalent bovine genomic sequences was also done, this gave less detailed results than the human analysis due to both the quality of orthologue prediction and assembly in promoter regions. However, the most common motifs could be detected in both sets.</p> <p>Conclusion</p> <p>Using promoter sequences from human genes is a useful approach when studying gene expression in species with limited or non-existing genomic sequence. As the bovine genome becomes better annotated it can in turn serve as the reference genome for other agriculturally important ruminants, such as sheep, goat and deer.</p

    Gene expression profiling of Naïve sheep genetically resistant and susceptible to gastrointestinal nematodes

    Get PDF
    BACKGROUND: Gastrointestinal nematodes constitute a major cause of morbidity and mortality in grazing ruminants. Individual animals or breeds, however, are known to differ in their resistance to infection. Gene expression profiling allows us to examine large numbers of transcripts simultaneously in order to identify those transcripts that contribute to an animal's susceptibility or resistance. RESULTS: With the goal of identifying genes with a differential pattern of expression between sheep genetically resistant and susceptible to gastrointestinal nematodes, a 20,000 spot ovine cDNA microarray was constructed. This array was used to interrogate the expression of 9,238 known genes in duodenum tissue of four resistant and four susceptible female lambs. Naïve animals were used in order to look at genes that were differentially expressed in the absence of infection with gastrointestinal nematodes. Forty one unique known genes were identified that were differentially expressed between the resistant and susceptible animals. Northern blotting of a selection of the genes confirmed differential expression. The differentially expressed genes had a variety of functions, although many genes relating to the stress response and response to stimulus were more highly expressed in the susceptible animals. CONCLUSION: We have constructed the first reported ovine microarray and used this array to examine gene expression in lambs genetically resistant and susceptible to gastrointestinal nematode infection. This study indicates that susceptible animals appear to be generating a hyper-sensitive immune response to non-nematode challenges. The gastrointestinal tract of susceptible animals is therefore under stress and compromised even in the absence of gastrointestinal nematodes. These factors may contribute to the genetic susceptibility of these animals

    Establishment of a pipeline to analyse non-synonymous SNPs in Bos taurus

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) are an abundant form of genetic variation in the genome of every species and are useful for gene mapping and association studies. Of particular interest are non-synonymous SNPs, which may alter protein function and phenotype. We therefore examined bovine expressed sequences for non-synonymous SNPs and validated and tested selected SNPs for their association with measured traits. RESULTS: Over 500,000 public bovine expressed sequence tagged (EST) sequences were used to search for coding SNPs (cSNPs). A total of 15,353 SNPs were detected in the transcribed sequences studied, of which 6,325 were predicted to be coding SNPs with the remaining 9,028 SNPs presumed to be in untranslated regions. Of the cSNPs detected, 2,868 were predicted to result in a change in the amino acid encoded. In order to determine the actual number of non-synonymous polymorphic SNPs we designed assays for 920 of the putative SNPs. These SNPs were then genotyped through a panel of cattle DNA pools using chip-based MALDI-TOF mass spectrometry. Of the SNPs tested, 29% were found to be polymorphic with a minor allele frequency >10%. A subset of the SNPs was genotyped through animal resources in order to look for association with age of puberty, facial eczema resistance or meat yield. Three SNPs were nominally associated with resistance to the disease facial eczema (P < 0.01). CONCLUSION: We have identified 15,353 putative SNPs in or close to bovine genes and 2,868 of these SNPs were predicted to be non-synonymous. Approximately 29% of the non-synonymous SNPs were polymorphic and common with a minor allele frequency >10%. Of the SNPs detected in this study, 99% have not been previously reported. These novel SNPs will be useful for association studies or gene mapping

    The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan

    Get PDF
    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell

    The COVID-19 Data Portal: accelerating SARS-CoV-2 and COVID-19 research through rapid open access data sharing.

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic will be remembered as one of the defining events of the 21st century. The rapid global outbreak has had significant impacts on human society and is already responsible for millions of deaths. Understanding and tackling the impact of the virus has required a worldwide mobilisation and coordination of scientific research. The COVID-19 Data Portal (https://www.covid19dataportal.org/) was first released as part of the European COVID-19 Data Platform, on April 20th 2020 to facilitate rapid and open data sharing and analysis, to accelerate global SARS-CoV-2 and COVID-19 research. The COVID-19 Data Portal has fortnightly feature releases to continue to add new data types, search options, visualisations and improvements based on user feedback and research. The open datasets and intuitive suite of search, identification and download services, represent a truly FAIR (Findable, Accessible, Interoperable and Reusable) resource that enables researchers to easily identify and quickly obtain the key datasets needed for their COVID-19 research

    Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

    Get PDF
    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology

    Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.

    Get PDF
    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology

    Ensembl’s 10th year

    Get PDF
    Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure

    The genome of the green anole lizard and a comparative analysis with birds and mammals

    Get PDF
    The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse—more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.National Science Foundation (U.S.) (NSF grant DEB-0920892)National Science Foundation (U.S.) (NSF grant DEB-0844624)National Human Genome Research Institute (U.S.
    corecore