5 research outputs found

    Electrospun polylactic acid/date palm polyphenol extract nanofibres for tissue engineering applications

    Get PDF
    In this study, a set of polylactic acid (PLA)/polyphenol extracted from date palm fruit (DP) blends were prepared by electrospinning process to be used as cell culture scaffolds for tissue engineering applications. For this purpose, PLA/DP blends with variable composition were dissolved in dichloromethane/dimethylformamide (70:30, v/v) mixture and then electrospun to obtain the fibres. Contact angle measurements, dynamic mechanical analysis, mechanical tensile and scanning electron microscopy (SEM) tools were used to study the physico-mechanical properties of the electrospun scaffolds. The results revealed that scaffolds became more hydrophilic with addition of DP. Increasing the polyphenol concentration caused the tensile strength and Young's modulus to decrease. The SEM graphs indicated a decrease in fibre diameter with increasing DP content. In addition, it was found that both cell proliferation and cell viability were enhanced with increased DP concentration within the scaffolds. The scratch test shows that there is an enhancement in cell migration through the scratch for PLA/DP scaffolds; again, higher DP content resulted better migration. Our results suggest that improved mechanical properties, decreased fibre diameter and enhanced hydrophilicity with addition of DP improved cell migration and cell adhesion for the scaffolds. Overall, these results demonstrate that DP is a potential natural cell-friendly product for tissue engineering applications such as tissue regeneration or wound healing assays

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy

    No full text
    Flammability of recycled polypropylene (PP)/low density polyethylene (LDPE)/high density polyethylene (HDPE) ternary blends containing date palm fibres is investigated in this study. Melt blending is used for the composite preparation and the palm fibres induce good mechanical strength to the blend composites. The effect of flame retardant magnesium hydroxide, is studied through the limiting oxygen index analysis and cone calorimeter studies. Morphology of the palm fibres in presence of fire retardant reveals interesting facts of base hydrolysis. Since the polymers used are recycled ones and the fibres are obtained from the date palm leaves, the whole composite manufactured stands as low cost, less energy consuming and environmental friendly. Though the flame retardant reduced the mechanical properties, the palm fibres strengthened the whole composite thus helping to achieve the flame retardancy and mechanical properties simultaneously. Flame retardancy is correlated with the thermal degradation and thermal conductivity of the blend fibre composites as well.Scopu

    Effects of date palm leaf fiber on the thermal and tensile properties of recycled ternary polyolefin blend composites

    No full text
    This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries. , The Korean Fiber Society and Springer Science+Business Media B.V.Scopu

    Electrospun polylactic acid/date palm polyphenol extract nanofibres for tissue engineering applications

    No full text
    In this study, a set of polylactic acid (PLA)/polyphenol extracted from date palm fruit (DP) blends were prepared by electrospinning process to be used as cell culture scaffolds for tissue engineering applications. For this purpose, PLA/DP blends with variable composition were dissolved in dichloromethane/dimethylformamide (70:30, v/v) mixture and then electrospun to obtain the fibres. Contact angle measurements, dynamic mechanical analysis, mechanical tensile and scanning electron microscopy (SEM) tools were used to study the physico-mechanical properties of the electrospun scaffolds. The results revealed that scaffolds became more hydrophilic with addition of DP. Increasing the polyphenol concentration caused the tensile strength and Young’s modulus to decrease. The SEM graphs indicated a decrease in fibre diameter with increasing DP content. In addition, it was found that both cell proliferation and cell viability were enhanced with increased DP concentration within the scaffolds. The scratch test shows that there is an enhancement in cell migration through the scratch for PLA/DP scaffolds; again, higher DP content resulted better migration. Our results suggest that improved mechanical properties, decreased fibre diameter and enhanced hydrophilicity with addition of DP improved cell migration and cell adhesion for the scaffolds. Overall, these results demonstrate that DP is a potential natural cell-friendly product for tissue engineering applications such as tissue regeneration or wound healing assays.Other Information Published in: Emergent Materials License: https://creativecommons.org/licenses/by/4.0See article on publisher's website: http://dx.doi.org/10.1007/s42247-019-00042-8</p
    corecore