24 research outputs found

    Real-Time Measurements of Photonic Microchips with Femtometer-Scale Spectral Precision and Ultra-High Sensitivity

    Full text link
    Photonic integrated circuits (PICs) are enabling major breakthroughs in a number of areas, including quantum computing, neuromorphic processors, wearable devices, and more. Nevertheless, existing PIC measurement methods lack the spectral precision, speed, and sensitivity required for refining current applications and exploring new frontiers such as point-of-care or wearable biosensors. Here, we present the Sweeping Optical Frequency Mixing Method (SOHO), surpassing traditional PIC measurement methods with real-time operation, 30 dB higher sensitivity, and over 100 times better spectral resolution. Leveraging the frequency mixing process with a sweeping laser and custom control software, SOHO excels in simplicity, eliminating the need for advanced optical components and additional calibration procedures. We showcase its superior performance on ultrahigh-quality factor (Q) fiber-loop resonators (Q = 46M) as well as microresonators realized on a new optical waveguide platform. An experimental spectral resolution of 19.1 femtometers is demonstrated using an 85-meter-long unbalanced fiber Mach Zehnder Interferometer, constrained by noise resulting from the extended fiber length, while the theoretical resolution is calculated to be 6.2 femtometers, limited by the linewidth of the reference laser. With its excellent performance metrics, SOHO has the potential to become a vital measurement tool in photonics, excelling in high-speed and high-resolution measurements of weak optical signals

    High-quality amorphous silicon carbide for hybrid photonic integration deposited at a low temperature

    Get PDF
    Integrated photonic platforms have proliferated in recent years, each demonstrating its unique strengths and shortcomings. Given the processing incompatibilities of different platforms, a formidable challenge in the field of integrated photonics still remains for combining the strengths of different optical materials in one hybrid integrated platform. Silicon carbide is a material of great interest because of its high refractive index, strong second- and third-order nonlinearities, and broad transparency window in the visible and near-infrared range. However, integrating silicon carbide (SiC) has been difficult, and current approaches rely on transfer bonding techniques that are time-consuming, expensive, and lacking precision in layer thickness. Here, we demonstrate high-index amorphous silicon carbide (a-SiC) films deposited at 150 °C and verify the high performance of the platform by fabricating standard photonic waveguides and ring resonators. The intrinsic quality factors of single-mode ring resonators were in the range of Qint = (4.7-5.7) × 105 corresponding to optical losses between 0.78 and 1.06 dB/cm. We then demonstrate the potential of this platform for future heterogeneous integration with ultralow-loss thin SiN and LiNbO3 platforms

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    A Study and Implementation of On-Chip EMC Techniques

    No full text
    ElectroMagnetic Interferences (EMI) are emerging problems in today's high speed circuits. There are several examples that these interferences affected the circuits and systems. This work tries to reduce the abovementioned problems in synchronous systems by modifying the clock signal such that it produces less interferers. In this thesis first EMI and its sources and related definitions are studied in Chap.1 and then a theoretical background is presented in Chap.2, finally Chap.3 and Chap.4 are dedicated to circuit implementation and simulation results, respectively. A novel multi-segment clocking scheme is presented in this thesis. An analytical methods for formal verification of advantages of this clocking method is presented in Chap.2. Chap.3 and Chap.4 also are devoted to implementation, simulation and comparison of proposed clocking method versus other methods. Since proposed clocking method does not set any constraint on timing (speed of the circuit) and does not impose very high extra power consumption on the circuit, compared to the conventional clocking, this method could be used to reduce interferences in system

    A Study and Implementation of On-Chip EMC Techniques

    No full text
    ElectroMagnetic Interferences (EMI) are emerging problems in today's high speed circuits. There are several examples that these interferences affected the circuits and systems. This work tries to reduce the abovementioned problems in synchronous systems by modifying the clock signal such that it produces less interferers. In this thesis first EMI and its sources and related definitions are studied in Chap.1 and then a theoretical background is presented in Chap.2, finally Chap.3 and Chap.4 are dedicated to circuit implementation and simulation results, respectively. A novel multi-segment clocking scheme is presented in this thesis. An analytical methods for formal verification of advantages of this clocking method is presented in Chap.2. Chap.3 and Chap.4 also are devoted to implementation, simulation and comparison of proposed clocking method versus other methods. Since proposed clocking method does not set any constraint on timing (speed of the circuit) and does not impose very high extra power consumption on the circuit, compared to the conventional clocking, this method could be used to reduce interferences in system
    corecore