1,686 research outputs found
Research of Thermal Coatings of Composite Materials
Разработаны композиционные материалы на основе абразивостойких, антифрикционных и термореактивных порошков, которые образуют композитное антифрикционное покрытие, обеспечивающее необходимый уровень физико-механических свойств и эксплуатационных характеристик (износостойкость, пористость и прочность сцепления)
Facilitating Building Information Modelling (BIM) using Integrated Project Delivery (IPD): A UK perspective
The Construction industry is a major player in the UK economy and is in need of continuous improvement. In an attempt to do so, in 2011 the UK government made Building Information Modelling (BIM) level 2 a mandate for all public projects by 2016. Integrated Project Delivery (IPD) is a project delivery approach closely attributed to BIM. However, it does not seem to have received proportionate level of attention and uptake in the UK
Stringy Tachyonic Instabilities of Non-Supersymmetric Ricci Flat Backgrounds
Superstring/M-theory compactified on compact Ricci flat manifolds have recently been conjectured to exhibit instabilities whenever the metrics do not have special holonomy. We use worldsheet conformal field theory to investigate instabilities of Type II superstring theories on compact, Ricci flat, spin 3-manifolds including a worldsheet description of their spin structures. The instabilities are signalled by the appearance of stringy tachyons at small radius and a negative (1-loop) vacuum energy density at large radius. We briefly discuss the extension to higher dimensions
A Method for Magma Viscosity Assessment by Lava Dome Morphology
Lava domes form when a highly viscous magma erupts on the surface. Several types of lava dome morphology can be distinguished depending on the flow rate and the rheology of magma: obelisks, lava lobes, and endogenic structures. The viscosity of magma nonlinearly depends on the volume fraction of crystals and temperature. Here we present an approach to magma viscosity estimation based on a comparison of observed and simulated morphological forms of lava domes. We consider a two-dimensional axisymmetric model of magma extrusion on the surface and lava dome evolution, and assume that the lava viscosity depends only on the volume fraction of crystals. The crystallization is associated with a growth of the liquidus temperature due to the volatile loss from the magma, and it is determined by the characteristic time of crystal content growth (CCGT) and the discharge rate. Lava domes are modeled using a finite-volume method implemented in Ansys Fluent software for various CCGTs and volcanic vent sizes. For a selected eruption duration a set of morphological shapes of domes (shapes of the interface between lava dome and air) is obtained. Lava dome shapes modeled this way are compared with the observed shape of the lava dome (synthesized in the study by a random modification of one of the calculated shapes). To estimate magma viscosity, the deviation between the observed dome shape and the simulated dome shapes is assessed by three functionals: the symmetric difference, the peak signal-to-noise ratio, and the structural similarity index measure. These functionals are often used in the computer vision and in image processing. Although each functional allows to determine the best fit between the modeled and observed shapes of lava dome, the functional based on the structural similarity index measure performs it better. The viscosity of the observed dome can be then approximated by the viscosity of the modeled dome, which shape fits best the shape of the observed dome. This approach can be extended to three-dimensional case studies to restore the conditions of natural lava dome growth
Ontologies, Mental Disorders and Prototypes
As it emerged from philosophical analyses and cognitive research, most concepts exhibit typicality effects, and resist to the efforts of defining them in terms of necessary and sufficient conditions. This holds also in the case of many medical concepts. This is a problem for the design of computer science ontologies, since knowledge representation formalisms commonly adopted in this field do not allow for the representation of concepts in terms of typical traits. However, the need of representing concepts in terms of typical traits concerns almost every domain of real world knowledge, including medical domains. In particular, in this article we take into account the domain of mental disorders, starting from the DSM-5 descriptions of some specific mental disorders. On this respect, we favor a hybrid approach to the representation of psychiatric concepts, in which ontology oriented formalisms are combined to a geometric representation of knowledge based on conceptual spaces
Temperature-dependent proximity magnetism in Pt
We experimentally demonstrate the existence of magnetic coupling between two
ferromagnets separated by a thin Pt layer. The coupling remains ferromagnetic
regardless of the Pt thickness, and exhibits a significant dependence on
temperature. Therefore, it cannot be explained by the established mechanisms of
magnetic coupling across nonmagnetic spacers. We show that the experimental
results are consistent with the presence of magnetism induced in Pt in
proximity to ferromagnets, in direct analogy to the well-known proximity
effects in superconductivity.Comment: 4 pages, 3 figure
Turbulent Origin of the Galactic-Center Magnetic Field: Nonthermal Radio Filaments
A great deal of study has been carried out over the last twenty years on the
origin of the magnetic activity in the Galactic center. One of the most popular
hypotheses assumes milli-Gauss magnetic field with poloidal geometry, pervading
the inner few hundred parsecs of the Galactic-center region. However, there is
a growing observational evidence for the large-scale distribution of a much
weaker field of B \lesssim 10 micro G in this region. Here, we propose that the
Galactic-center magnetic field originates from turbulent activity that is known
to be extreme in the central hundred parsecs. In this picture the spatial
distribution of the magnetic field energy is highly intermittent, and the
regions of strong field have filamentary structures. We propose that the
observed nonthermal radio filaments appear in (or, possibly, may be identified
with) such strongly magnetized regions. At the same time, the large-scale
diffuse magnetic field is weak. Both results of our model can explain the
magnetic field measurements of the the Galactic-center region. In addition, we
discuss the role of ionized outflow from stellar clusters in producing the long
magnetized filaments perpendicular to the Galactic plane.Comment: 11 pages, accepted to ApJ Letter
The electronic structure of the heavy fermion metal
The electronic structure of the first reported heavy fermion compound without
f-electrons LiV_2O_4 was studied by an ab-initio calculation method. In the
result of the trigonal splitting and d-d Coulomb interaction one electron of
the configuration of V ion is localized and the rest partially fills
a relatively broad conduction band. The effective Anderson impurity model was
solved by Non-Crossing-Approximation method, leading to an estimation for the
single-site Kondo energy scale T_K. Then, we show how the so-called exhaustion
phenomenon of Nozi\`eres for the Kondo lattice leads to a remarkable decrease
of the heavy-fermion (or coherence) energy scale (D
is the typical bandwidth), comparable to the experimental result.Comment: 4 pages, RevTeX; 3 figures in format .eps. submitted to PR
- …