88 research outputs found

    Honeybee Robotics Surface Science Tools

    Get PDF
    This presentation was part of the session : Poster SessionsSixth International Planetary Probe WorkshopHoneybee Robotics has been developing gas assisted excavation systems and drills/penetrometers for planetary exploration. These systems tend to be simpler and in turn more robust than similar devices powered by electro mechanical actuators. The principle lies in injecting of gas into regolith and creating high pressure cells. As gas follows the path of least resistance (back up) it carries soil particles with it. The mining tube can be positioned in such a way as to capture this dusty gas (regolith particles suspended in gas) for further processing (e.g. oxygen extraction) or diverted away from a hole and onto the surrounding ground

    Downhole Elemental Analysis with LIBS

    Get PDF
    In this paper we discuss a novel instrument, currently under development at Honeybee Robotics with SBIR funding from NASA. The device is designed to characterize elemental composition as a function of depth in non-terrestrial geological formations. The instrument consists of a miniaturized laser-induced breakdown spectrometer (LIBS) analyzer integrated in a 2" diameter drill string. While the drill provides subsurface access, the LIBS analyzer provides information on the elemental composition of the borehole wall. This instrument has a variety of space applications ranging from exploration of the Moon for which it was originally designed, to Mars, as well as a variety of terrestrial applications. Subsurface analysis is usually performed by sample acquisition through a drill or excavator, followed by sample preparation and subsequent sample presentation to an instrument or suite of instruments. An alternative approach consisting in bringing a miniaturized version of the instrument to the sample has many advantages over the traditional methodology, as it allows faster response, reduced probability of cross-contamination and a simplification in the sampling mechanisms. LIBS functions by focusing a high energy laser on a material inducing a plasma consisting of a small fraction of the material under analysis. Optical emission from the plasma, analyzed by a spectrometer, can be used to determine elemental composition. A triangulation sensor located in the sensor head determines the distance of the sensor from the borehole wall. An actuator modifies the position of the sensor accordingly, in order to compensate for changes due to the profile of the borehole walls. This is necessary because LIBS measurements are negatively affected by changes in the relative position of the focus of the laser with respect to the position of the sample (commonly referred to as the "lens to sample distance"). Profiling the borehole is done by adjusting the position of the sensor with a vertical stage; a second actuator at the top of the downhole probe allows radial scanning of the borehole. Analysis of iron and titanium in lunar simulant with LIBS was performed in air using the method of standard addition. The results for lunar simulant NU-LHT-2M show a value for the concentration of iron ranging between 2.29% and 3.05% depending on the atomic line selected. The accepted value for the sample analyzed is 2.83%, showing the capability for the system in development to provide qualitative and semi-quantitative analysis in real-time

    ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    Get PDF
    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station

    Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return

    Get PDF
    A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems

    Thermal Extraction of Volatiles from Lunar and Asteroid Regolith in Axisymmetric Crank-Nicholson Modeling

    Full text link
    A physics-based computer model has been developed to support the development of volatile extraction from regolith of the Moon and asteroids. The model is based upon empirical data sets for extraterrestrial soils and simulants, including thermal conductivity of regolith and mixed composition ice, heat capacity of soil and mixed composition ice, hydrated mineral volatile release patterns, and sublimation of ice. A new thermal conductivity relationship is derived that generalizes cases of regolith with varying temperature, soil porosity, and pore vapor pressure. Ice composition is based upon measurements of icy ejecta from the Lunar CRater Observation and Sensing Satellite (LCROSS) impact and it is shown that thermal conductivity and heat capacity equations for water ice provide adequate accuracy at the present level of development. The heat diffusion equations are integrated with gas diffusion equations using multiple adaptive timesteps. The entire model is placed into a Crank-Nicholson framework where the finite difference formalism was extended to two dimensions in axisymmetry. The one-dimensional version of the model successfully predicts heat transfer that matches lunar and asteroid data sets. The axisymmetric model has been used to study heat dissipation around lunar drills and water extraction in asteroid coring devices.Comment: 50 pages, 23 figure

    The World Is Not Enough (WINE) - Space Mining Robot with Steam Propulsion

    Get PDF
    The World Is Not Enough (WINE) is a concept for a new generation of spacecraft that takes advantage of In-Situ Resource Utilization (ISRU) to explore space. WINE mines to extract water from planetary regolith, capturing the water as ice in a cold trap and heating it to create steam for propulsion. By propulsively "hopping" from location to location, WINE can explore Solar System bodies as well as individual bodies (e.g. WINE could cover much greater distances on Europa or the Moon than a rover, and can reach otherwise inaccessible regions). And by refueling itself as it goes, WINE's range is not limited by consumables. This makes WINE particularly well suited to prospecting and reconnaissance missions. A prototype of WINE was designed, fabricated and tested in a large vacuum chamber. The vehicle was used to demonstrate several of the primary operations that would be required of the WINE spacecraft including: mining and heating regolith to extract water; capturing water as ice in a cold trap; reorienting the vehicle to allow for further mining; pushing captured water into a propulsion tank; and heating propellant to create steam for thrust. All systems demonstrated are fully functional. All tests are conducted with regolith simulant in a vacuum chamber

    Low Force Icy Regolith Penetration Technology

    Get PDF
    Recent data from the Moon, including LCROSS data, indicate large quantities of water ice and other volatiles frozen into the soil in the permanently shadowed craters near the poles. If verified and exploited, these volatiles will revolutionize spaceflight as an inexpensive source of propellants and other consumables outside Earth's gravity well. This report discusses a preliminary investigation of a method to insert a sensor through such a soiVice mixture to verify the presence, nature, and concentration of the ice. It uses percussion to deliver mechanical energy into the frozen mixture, breaking up the ice and decompacting the soil so that only low reaction forces are required from a rover or spacecraft to push the sensor downward. The tests demonstrate that this method may be ideal for a small platform in lunar gravity. However, there are some cases where the system may not be able to penetrate the icy soil, and there is some risk ofthe sensor becoming stuck so that it cannot be retracted, so further work is needed. A companion project (ISDS for Water Detection on the Lunar Surface) has performed preliminary investigation of a dielectric/thermal sensor for use with this system

    CheMin-V: A Definitive Mineralogy Instrument for Landed Science on Venus

    Get PDF
    An X-ray diffraction instrument is described that will provide quantitative mineralogical analyses of up to 4 individual samples of Venus regolith in ~1 hour

    Impact of Drilling Operations on Lunar Volatiles Capture: Thermal Vacuum Tests

    Get PDF
    In Situ Resource Utilization (ISRU) enables future planetary exploration by using local resources to supply mission consumables. This idea of 'living off the land' has the potential to reduce mission cost and risk. On the moon, water has been identified as a potential resource (for life support or propellant) at the lunar poles, where it exists as ice in the subsurface. However, the depth and content of this resource has yet to be confirmed on the ground; only remote detection data exists. The upcoming Resource Prospector mission (RP) will 'ground-truth' the water using a rover, drill, and the RESOLVE science package. As the 2020 planned mission date nears, component level hardware is being tested in relevant lunar conditions (thermal vacuum). In August 2014 a series of drilling tests were performed using the Honeybee Robotics Lunar Prospecting Drill inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The drill used a unique auger design to capture and retain the lunar regolith simulant. The goal of these tests was to investigate volatiles (water) loss during drilling and sample transfer to a sample crucible in order to validate this regolith sampling method. Twelve soil samples were captured over the course of two tests at pressures of 10(exp-5) Torr and ambient temperatures between -80C to -20C. Each sample was obtained from a depth of 40 cm to 50 cm within a cryogenically frozen bed of NU-LHT-3M lunar regolith simulant doped with 5 wt% water. Upon acquisition, each sample was transferred and hermetically sealed inside a crucible. The samples were later baked out to determine water wt% and in turn volatile loss by following ASTM standard practices. Of the twelve tests, four sealed properly and lost an average of 30% of their available water during drilling and transfer. The variability in the results correlated well with ambient temperature (lower the temperature lower volatiles loss) and the trend agreed with the sublimation rates for the same temperature. Moisture retention also correlated with quantity of sample: a larger amount of material resulted in less water loss. The drilling process took an average of 10 minutes to capture and transfer each sample. The drilling power was approximately 20 Watt with a Weight on Bit of approximately 30 N. The bit temperature indicated little heat input into formation during the drilling process

    An Overview of the Volatiles Investigating Polar Exploration Rover (VIPER) Mission

    Get PDF
    A critical goal to both science and exploration is to understand the form and location of lunar polar volatiles. The lateral and vertical distributions of these volatiles inform us of the processes that control the emplacement and retention of these volatiles, as well as helping to formulate in-situ resource utilization (ISRU) architectures. While significant progress has been made from orbital observations, measurements at a range of scales from centimeters to kilometers across the lunar surface are needed to generate adequate "volatile mineral models" for use in evaluating the resource potential of volatiles at the Moon. VIPER is a solar and battery powered rover mission designed to operate over multiple lunar days, traversing several kilometers as it continuously monitors for subsurface hydrogen and other surface volatiles. In specific thermal terrain types, including permanently shadowed terrain and locales that permit near-surface ice stability, subsurface samples will be examined for volatile content using a one-meter drill. This talk will provide an overview of the VIPER mission which is scheduled for flight to the Lunar South Pole in December 2022
    • …
    corecore