2,183 research outputs found

    Severe storms forecast systems

    Get PDF
    Two research tasks are described: (1) the improvement and enhancement of an existing mesoscale numerical simulation system, and (2) numerical diagnostic studies associated with an individual case of severe storm development (April 10, 1979 in the Red River Valley of Texas and Oklahoma)

    Isolated leptons from heavy flavor decays: Theory and data

    Full text link
    Events with isolated leptons play a prominent role in signatures of new physics phenomena at high energy collider physics facilities. In earlier publications, we examine the standard model contribution to isolated lepton production from bottom and charm mesons and baryons through their semileptonic decays (b, c -> l + X), showing that this source can overwhelm the effects of other standard model processes in some kinematic domains. In this paper, we show that we obtain good agreement with recent Tevatron collider data, both validating our simulations and showing that we underestimate the magnitude of the heavy-flavor contribution to the isolated lepton yields. We also show that the isolation requirement acts as a narrow bandpass filter on the momentum of the isolated lepton, and we illustrate the effect of this filter on the background to Higgs boson observation in the dilepton mode. We introduce and justify a new rule of thumb: isolated electrons and muons from heavy flavor decay are produced with roughly the same distributions as b and c quarks, but with 1/200 times the rates of b and c production, respectively.Comment: 12 pg, revtex, 5 fig, corrected typo

    Angular correlations in single-top-quark and Wjj production at next-to-leading order

    Full text link
    I demonstrate that the correlated angular distributions of final-state particles in both single-top-quark production and the dominant Wjj backgrounds can be reliably predicted. Using these fully-correlated angular distributions, I propose a set of cuts that can improve the single-top-quark discovery significance by 25%, and the signal to background ratio by a factor of 3 with very little theoretical uncertainty. Up to a subtlety in t-channel single-top-quark production, leading-order matrix elements are shown to be sufficient to reproduce the next-to-leading order correlated distributions.Comment: 22 pages, 23 figs, RevTex4, fixed typos, to appear in Phys. Rev.

    Standard model explanation of a CDF dijet excess in Wjj

    Full text link
    We demonstrate the recent observation of a peak in the dijet invariant mass of the Wjj signal observed by the CDF Collaboration can be explained as the same upward fluctuation observed by CDF in single-top-quark production. In general, both t-channel and s-channel single-top-quark production produce kinematically induced peaks in the dijet spectrum. Since CDF used a Monte Carlo simulation to subtract the single-top backgrounds instead of data, a peak in the dijet spectrum is expected. The D0 Collaboration has a small upward fluctuation in their published t-channel data; and hence we predict they would see at most a small peak in the dijet invariant mass spectrum of Wjj if they follow the same procedure as CDF.Comment: 3 pg., 2 figs, revtex, minor clarifications, to appear in Phys. Rev.

    Missing heavy flavor backgrounds to Higgs boson production

    Full text link
    We investigate characteristics of the signal and backgrounds for Higgs boson decay into WW at the Fermilab Tevatron and CERN Large Hadron Collider. In the the lepton-pair-plus-missing-energy final state, we show that the background receives an important contribution from semileptonic decays of heavy flavors. Lepton isolation cuts provide too little suppression of these heavy flavor contributions, and an additional 4 to 8 orders-of-magnitude suppression must come from physics cuts. We demonstrate that an increase of the minimum transverse momentum of nonleading leptons in multilepton events is one effective way to achieve the needed suppression, without appreciable loss of the Higgs boson signal. Such a cut would impact the efficiency of searches for supersymmetry as well. We emphasize the importance of direct measurement of the lepton background from heavy flavor production.Comment: 23 pgs., 10 figs, revtex4, 1 Ref. added, minor typos corrected, to appear in Phys. Rev.

    Development of a severe local storm prediction system: A 60-day test of a mesoscale primitive equation model

    Get PDF
    The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined

    Catalogue of lunar craters cross sections. I - Craters with peaks Research report no. 16

    Get PDF
    Lunar craters with centrally located peaks - tables and profile graph

    Recent examples of mesoscale numerical forecasts of severe weather events along the east coast

    Get PDF
    Mesoscale numerical forecasts utilizing the Mesoscale Atmospheric Simulation System (MASS) are documented for two East Coast severe weather events. The two events are the thunderstorm and heavy snow bursts in the Washington, D.C. - Baltimore, MD region on 8 March 1984 and the devastating tornado outbreak across North and South Carolina on 28 March 1984. The forecasts are presented to demonstrate the ability of the model to simulate dynamical interactions and diabatic processes and to note some of the problems encountered when using mesoscale models for day-to-day forecasting
    corecore