48 research outputs found

    A systematic approach to designing reliable VV optimization methodology: Assessment of internal validity of echocardiographic, electrocardiographic and haemodynamic optimization of cardiac resynchronization therapy

    Get PDF
    AbstractBackgroundIn atrial fibrillation (AF), VV optimization of biventricular pacemakers can be examined in isolation. We used this approach to evaluate internal validity of three VV optimization methods by three criteria.Methods and resultsTwenty patients (16 men, age 75±7) in AF were optimized, at two paced heart rates, by LVOT VTI (flow), non-invasive arterial pressure, and ECG (minimizing QRS duration). Each optimization method was evaluated for: singularity (unique peak of function), reproducibility of optimum, and biological plausibility of the distribution of optima.The reproducibility (standard deviation of the difference, SDD) of the optimal VV delay was 10ms for pressure, versus 8ms (p=ns) for QRS and 34ms (p<0.01) for flow.Singularity of optimum was 85% for pressure, 63% for ECG and 45% for flow (Chi2=10.9, p<0.005).The distribution of pressure optima was biologically plausible, with 80% LV pre-excited (p=0.007). The distributions of ECG (55% LV pre-excitation) and flow (45% LV pre-excitation) optima were no different to random (p=ns).The pressure-derived optimal VV delay is unaffected by the paced rate: SDD between slow and fast heart rate is 9ms, no different from the reproducibility SDD at both heart rates.ConclusionsUsing non-invasive arterial pressure, VV delay optimization by parabolic fitting is achievable with good precision, satisfying all 3 criteria of internal validity. VV optimum is unaffected by heart rate. Neither QRS minimization nor LVOT VTI satisfy all validity criteria, and therefore seem weaker candidate modalities for VV optimization. AF, unlinking interventricular from atrioventricular delay, uniquely exposes resynchronization concepts to experimental scrutiny

    Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function.

    Get PDF
    Aims: Cardiac resynchronization therapy (CRT) may exert its beneficial haemodynamic effect by improving ventricular synchrony and improving atrioventricular (AV) timing. The aim of this study was to establish the relative importance of the mechanisms through which CRT improves cardiac function and explore the potential for additional improvements with improved ventricular resynchronization. Methods and Results: We performed simulations using the CircAdapt haemodynamic model and performed haemodynamic measurements while adjusting AV delay, at low and high heart rates, in 87 patients with CRT devices. We assessed QRS duration, presence of fusion, and haemodynamic response. The simulations suggest that intrinsic PR interval and the magnitude of reduction in ventricular activation determine the relative importance of the mechanisms of benefit. For example, if PR interval is 201 ms and LV activation time is reduced by 25 ms (typical for current CRT methods), then AV delay optimization is responsible for 69% of overall improvement. Reducing LV activation time by an additional 25 ms produced an additional 2.6 mmHg increase in blood pressure (30% of effect size observed with current CRT). In the clinical population, ventricular fusion significantly shortened QRS duration (Δ-27 ± 23 ms, P < 0.001) and improved systolic blood pressure (mean 2.5 mmHg increase). Ventricular fusion was present in 69% of patients, yet in 40% of patients with fusion, shortening AV delay (to a delay where fusion was not present) produced the optimal haemodynamic response. Conclusions: Improving LV preloading by shortening AV delay is an important mechanism through which cardiac function is improved with CRT. There is substantial scope for further improvement if methods for delivering more efficient ventricular resynchronization can be developed. Clinical Trial Registration: Our clinical data were obtained from a subpopulation of the British Randomised Controlled Trial of AV and VV Optimisation (BRAVO), which is a registered clinical trial with unique identifier: NCT01258829, https://clinicaltrials.gov

    British randomised controlled trial of AV and VV optimization ("BRAVO") study:rationale, design, and endpoints

    Get PDF
    Background Echocardiographic optimization of pacemaker settings is the current standard of care for patients treated with cardiac resynchronization therapy. However, the process requires considerable time of expert staff. The BRAVO study is a non-inferiority trial comparing echocardiographic optimization of atrioventricular (AV) and interventricular (VV) delay with an alternative method using non-invasive blood pressure monitoring that can be automated to consume less staff resources. Methods/Design BRAVO is a multi-centre, randomized, cross-over, non-inferiority trial of 400 patients with a previously implanted cardiac resynchronization device. Patients are randomly allocated to six months in each arm. In the echocardiographic arm, AV delay is optimized using the iterative method and VV delay by maximizing LVOT VTI. In the haemodynamic arm AV and VV delay are optimized using non-invasive blood pressure measured using finger photoplethysmography. At the end of each six month arm, patients undergo the primary outcome measure of objective exercise capacity, quantified as peak oxygen uptake (VO2) on a cardiopulmonary exercise test. Secondary outcome measures are echocardiographic measurement of left ventricular remodelling, quality of life score and N-terminal pro B-type Natriuretic Peptide (NT-pro BNP). The study is scheduled to complete recruitment in December 2013 and to complete follow up in December 2014. Discussion If exercise capacity is non-inferior with haemodynamic optimization compared with echocardiographic optimization, it would be proof of concept that haemodynamic optimization is an acceptable alternative which has the potential to be more easily implemented

    Rationale and design of the randomized multicentre His Optimized Pacing Evaluated for Heart Failure (HOPE-HF) trial:HOPE HF Trial rationale and design

    Get PDF
    Aims In patients with heart failure and a pathologically prolonged PR interval, left ventricular (LV) filling can be improved by shortening atrioventricular delay using His‐bundle pacing. His‐bundle pacing delivers physiological ventricular activation and has been shown to improve acute haemodynamic function in this group of patients. In the HOPE‐HF (His Optimized Pacing Evaluated for Heart Failure) trial, we are investigating whether these acute haemodynamic improvements translate into improvements in exercise capacity and heart failure symptoms. Methods and results This multicentre, double‐blind, randomized, crossover study aims to randomize 160 patients with PR prolongation (≥200 ms), LV impairment (EF ≤ 40%), and either narrow QRS (≤140 ms) or right bundle branch block. All patients receive a cardiac device with leads positioned in the right atrium and the His bundle. Eligible patients also receive a defibrillator lead. Those not eligible for implantable cardioverter defibrillator have a backup pacing lead positioned in an LV branch of the coronary sinus. Patients are allocated in random order to 6 months of (i) haemodynamically optimized dual chamber His‐bundle pacing and (ii) backup pacing only, using the non‐His ventricular lead. The primary endpoint is change in exercise capacity assessed by peak oxygen uptake. Secondary endpoints include change in ejection fraction, quality of life scores, B‐type natriuretic peptide, daily patient activity levels, and safety and feasibility assessments of His‐bundle pacing. Conclusions Hope‐HF aims to determine whether correcting PR prolongation in patients with heart failure and narrow QRS or right bundle branch block using haemodynamically optimized dual chamber His‐bundle pacing improves exercise capacity and symptoms. We aim to complete recruitment by the end of 2018 and report in 2020

    Multicenter Randomized Controlled Crossover Trial Comparing Hemodynamic Optimization Against Echocardiographic Optimization of AV and VV Delay of Cardiac Resynchronization Therapy:The BRAVO Trial

    Get PDF
    Objectives: BRAVO (British Randomized Controlled Trial of AV and VV Optimization) is a multicenter, randomized, crossover, noninferiority trial comparing echocardiographic optimization of atrioventricular (AV) and interventricular delay with a noninvasive blood pressure method. Background: Cardiac resynchronization therapy including AV delay optimization confers clinical benefit, but the optimization requires time and expertise to perform. Methods: This study randomized patients to echocardiographic optimization or hemodynamic optimization using multiple-replicate beat-by-beat noninvasive blood pressure at baseline; after 6 months, participants were crossed over to the other optimization arm of the trial. The primary outcome was exercise capacity, quantified as peak exercise oxygen uptake. Secondary outcome measures were echocardiographic left ventricular (LV) remodeling, quality-of-life scores, and N-terminal pro–B-type natriuretic peptide. Results: A total of 401 patients were enrolled, the median age was 69 years, 78% of patients were men, and the New York Heart Association functional class was II in 84% and III in 16%. The primary endpoint, peak oxygen uptake, met the criterion for noninferiority (pnoninferiority = 0.0001), with no significant difference between the hemodynamically optimized arm and echocardiographically optimized arm of the trial (mean difference 0.1 ml/kg/min). Secondary endpoints for noninferiority were also met for symptoms (mean difference in Minnesota score 1; pnoninferiority = 0.002) and hormonal changes (mean change in N-terminal pro–B-type natriuretic peptide -10 pg/ml; pnoninferiority = 0.002). There was no significant difference in LV size (mean change in LV systolic dimension 1 mm; pnoninferiority < 0.001; LV diastolic dimension 0 mm; pnoninferiority <0.001). In 30% of patients the AV delay identified as optimal was more than 20 ms from the nominal setting of 120 ms. Conclusions: Optimization of cardiac resynchronization therapy devices by using noninvasive blood pressure is noninferior to echocardiographic optimization. Therefore, noninvasive hemodynamic optimization is an acceptable alternative that has the potential to be automated and thus more easily implemented. (British Randomized Controlled Trial of AV and VV Optimization [BRAVO]; NCT01258829

    ST-Elevation Magnitude Correlates With Right Ventricular Outflow Tract Conduction Delay in Type I Brugada ECG

    Get PDF
    Background: The substrate location and underlying electrophysiological mechanisms that contribute to the characteristic ECG pattern of Brugada syndrome (BrS) are still debated. Using noninvasive electrocardiographical imaging, we studied whole heart conduction and repolarization patterns during ajmaline challenge in BrS individuals. Methods and Results: A total of 13 participants (mean age, 44±12 years; 8 men), 11 concealed patients with type I BrS and 2 healthy controls, underwent an ajmaline infusion with electrocardiographical imaging and ECG recordings. Electrocardiographical imaging activation recovery intervals and activation timings across the right ventricle (RV) body, outflow tract (RVOT), and left ventricle were calculated and analyzed at baseline and when type I BrS pattern manifested after ajmaline infusion. Peak J-ST point elevation was calculated from the surface ECG and compared with the electrocardiographical imaging–derived parameters at the same time point. After ajmaline infusion, the RVOT had the greatest increase in conduction delay (5.4±2.8 versus 2.0±2.8 versus 1.1±1.6 ms; P =0.007) and activation recovery intervals prolongation (69±32 versus 39±29 versus 21±12 ms; P =0.0005) compared with RV or left ventricle. In controls, there was minimal change in J-ST point elevation, conduction delay, or activation recovery intervals at all sites with ajmaline. In patients with BrS, conduction delay in RVOT, but not RV or left ventricle, correlated to the degree of J-ST point elevation (Pearson R , 0.81; P &lt;0.001). No correlation was found between J-ST point elevation and activation recovery intervals prolongation in the RVOT, RV, or left ventricle. Conclusions: Magnitude of ST (J point) elevation in the type I BrS pattern is attributed to degree of conduction delay in the RVOT and not prolongation in repolarization time. </jats:sec
    corecore