69 research outputs found
Early Invasion of Brain Parenchyma by African Trypanosomes
Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable
Mining a Cathepsin Inhibitor Library for New Antiparasitic Drug Leads
The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ∼2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts
Trypanosoma cruzi CYP51 Inhibitor Derived from a Mycobacterium tuberculosis Screen Hit
Enzyme sterol 14α-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas' disease therapy. We previously identified a chemical scaffold capable of delivering a variety of chemical structures into the CYP51 active site. In this work the binding modes of several second generation compounds carrying this scaffold were determined in high-resolution co-crystal structures with CYP51 of Mycobacterium tuberculosis. Subsequent assays against CYP51 in Trypanosoma cruzi, the agent of Chagas' disease, demonstrated that two of the compounds bound tightly to the enzyme. Both were tested for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. This compound is currently being evaluated in animal models of Chagas' disease. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability of a single amino acid residue at a critical position in the active site. Our work is aimed at rational design of potent and highly selective CYP51 inhibitors with potential to become therapeutic drugs. Drug selectivity to prevent host–pathogen cross-reactivity is pharmacologically important, because CYP51 is present in human host
Physical and Functional Interaction between DNA Ligase IIIα and Poly(ADP-Ribose) Polymerase 1 in DNA Single-Strand Break Repair
The repair of DNA single-strand breaks in mammalian cells is mediated by poly(ADP-ribose) polymerase 1 (PARP-1), DNA ligase IIIα, and XRCC1. Since these proteins are not found in lower eukaryotes, this DNA repair pathway plays a unique role in maintaining genome stability in more complex organisms. XRCC1 not only forms a stable complex with DNA ligase IIIα but also interacts with several other DNA repair factors. Here we have used affinity chromatography to identify proteins that associate with DNA ligase III. PARP-1 binds directly to an N-terminal region of DNA ligase III immediately adjacent to its zinc finger. In further studies, we have shown that DNA ligase III also binds directly to poly(ADP-ribose) and preferentially associates with poly(ADP-ribosyl)ated PARP-1 in vitro and in vivo. Our biochemical studies have revealed that the zinc finger of DNA ligase III increases DNA joining in the presence of either poly(ADP-ribosyl)ated PARP-1 or poly(ADP-ribose). This provides a mechanism for the recruitment of the DNA ligase IIIα-XRCC1 complex to in vivo DNA single-strand breaks and suggests that the zinc finger of DNA ligase III enables this complex and associated repair factors to locate the strand break in the presence of the negatively charged poly(ADP-ribose) polymer
Deviating the level of proliferating cell nuclear antigen in <i>Trypanosoma brucei</i> elicits distinct mechanisms for inhibiting proliferation and cell cycle progression
<p>The DNA replication machinery is spatially and temporally coordinated in all cells to reproduce a single exact copy of the genome per division, but its regulation in the protozoan parasite <i>Trypanosoma brucei</i> is not well characterized. We characterized the effects of altering the levels of proliferating cell nuclear antigen, a key component of the DNA replication machinery, in bloodstream form <i>T. brucei.</i> This study demonstrated that tight regulation of TbPCNA levels was critical for normal proliferation and DNA replication in the parasite. Depleting TbPCNA mRNA reduced proliferation, severely diminished DNA replication, arrested the synthesis of new DNA and caused the parasites to accumulated in G2/M. Attenuating the parasite by downregulating TbPCNA caused it to become hypersensitive to hydroxyurea. Overexpressing TbPCNA in <i>T. brucei</i> arrested proliferation, inhibited DNA replication and prevented the parasite from exiting G2/M. These results indicate that distinct mechanisms of cell cycle arrest are associated with upregulating or downregulating TbPCNA. The findings of this study validate deregulating intra-parasite levels of TbPCNA as a potential strategy for therapeutically exploiting this target in bloodstream form <i>T. brucei</i>.</p
RNA Interference of Trypanosoma brucei Cathepsin B and L Affects Disease Progression in a Mouse Model
We investigated the roles played by the cysteine proteases cathepsin B and cathepsin L (brucipain) in the pathogenesis of Trypansoma brucei brucei in both an in vivo mouse model and an in vitro model of the blood–brain barrier. Doxycycline induction of RNAi targeting cathepsin B led to parasite clearance from the bloodstream and prevent a lethal infection in the mice. In contrast, all mice infected with T. brucei containing the uninduced Trypanosoma brucei cathepsin B (TbCatB) RNA construct died by day 13. Induction of RNAi against brucipain did not cure mice from infection; however, 50 % of these mice survived 60 days longer than uninduced controls. The ability of T. b. brucei to cross an in vitro model of the human blood–brain barrier was also reduced by brucipain RNAi induction. Taken together, the data suggest that while TbCatB is the more likel
Recommended from our members
Early invasion of brain parenchyma by African trypanosomes.
Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable
- …