324 research outputs found

    Microbial Reduction of Crystalline Iron(III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth

    Get PDF
    Quantitative aspects of microbial crystalline iron- (III) oxide reduction were examined using a dissimilatory iron(III) oxide-reducing bacterium (Shewanella alga strain BrY). The initial rate and long-term extent of reduction of a range of synthetic iron(III) oxides were linearly correlated with oxide surface area. Oxide reduction rates reached an asymptote at cell concentrations in excess of ≈1 x 109/m2 of oxide surface. Experiments with microbially reduced goethite that had been washed with pH 5 sodium acetate to remove adsorbed Fe(II) suggested that formation of a Fe(II) surface phase (adsorbed or precipitated) limited the extent of iron(III) oxide reduction. These results demonstrated explicitly that the rate and extent of microbial iron (III) oxide reduction is controlled by the surface area and site concentration of the solid phase. Strain BrY grew in media with synthetic goethite as the sole electron acceptor. The quantity of cells produced per micromole of goethite reduced (2.5 X 106) was comparable to that determined previously for growth of BrY and other dissimilatory Fe (III)- reducing bacteria coupled to amorphous iron(III) oxide reduction. BrY reduced a substantial fraction (8-18%) of the crystalline iron(III) oxide content of a variety of soil and subsurface materials, and several cultures containing these materials were transferred repeatedly with continued active Fe(III) reduction. These findings indicate that Fe(III)- reducing bacteria may be able to survive and produce significant quantities of Fe(II) in anaerobic soil and subsurface environments where crystalline iron(III) oxides (e.g., goethite) are the dominant forms of Fe- (III) available for microbial reduction. Results suggest that the potential for cell growth and Fe (II) generation will be determined by the iron (III) oxide surface site concentration in the soil or sediment matrix

    Microbial Reduction of Crystalline Iron(III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth

    Get PDF
    Quantitative aspects of microbial crystalline iron- (III) oxide reduction were examined using a dissimilatory iron(III) oxide-reducing bacterium (Shewanella alga strain BrY). The initial rate and long-term extent of reduction of a range of synthetic iron(III) oxides were linearly correlated with oxide surface area. Oxide reduction rates reached an asymptote at cell concentrations in excess of ≈1 x 109/m2 of oxide surface. Experiments with microbially reduced goethite that had been washed with pH 5 sodium acetate to remove adsorbed Fe(II) suggested that formation of a Fe(II) surface phase (adsorbed or precipitated) limited the extent of iron(III) oxide reduction. These results demonstrated explicitly that the rate and extent of microbial iron (III) oxide reduction is controlled by the surface area and site concentration of the solid phase. Strain BrY grew in media with synthetic goethite as the sole electron acceptor. The quantity of cells produced per micromole of goethite reduced (2.5 X 106) was comparable to that determined previously for growth of BrY and other dissimilatory Fe (III)- reducing bacteria coupled to amorphous iron(III) oxide reduction. BrY reduced a substantial fraction (8-18%) of the crystalline iron(III) oxide content of a variety of soil and subsurface materials, and several cultures containing these materials were transferred repeatedly with continued active Fe(III) reduction. These findings indicate that Fe(III)- reducing bacteria may be able to survive and produce significant quantities of Fe(II) in anaerobic soil and subsurface environments where crystalline iron(III) oxides (e.g., goethite) are the dominant forms of Fe- (III) available for microbial reduction. Results suggest that the potential for cell growth and Fe (II) generation will be determined by the iron (III) oxide surface site concentration in the soil or sediment matrix

    Multispecies diffusion models: A study of uranyl species diffusion

    Get PDF
    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy’s Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains

    A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA

    Get PDF
    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs+ in NaNO3 brine. The binary exchange behavior of Cs+–Na+, Cs+–K+, and Na+–K+ was measured over a range in electrolyte concentration. Vanselow selectivity coefficients (Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na+–Cs+ than K+–Cs+, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs–Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs+ exchange, and was extended to the ternary exchange system of Cs+–Na+–K+ on the pristine sediment. The model was also used to predict 137Cs+ distribution between sediment and aqueous phase (Kd) beneath a leaked HLW tank in Hanfordd’s S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume

    A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA

    Get PDF
    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs+ in NaNO3 brine. The binary exchange behavior of Cs+–Na+, Cs+–K+, and Na+–K+ was measured over a range in electrolyte concentration. Vanselow selectivity coefficients (Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na+–Cs+ than K+–Cs+, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs–Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs+ exchange, and was extended to the ternary exchange system of Cs+–Na+–K+ on the pristine sediment. The model was also used to predict 137Cs+ distribution between sediment and aqueous phase (Kd) beneath a leaked HLW tank in Hanfordd’s S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume

    Influence of Aqueous and Solid-Phase Fe(II) Complexants on Microbial Reduction of Crystalline Iron(III) Oxides

    Get PDF
    The influence of aqueous (NTA and EDTA) and solidphase (aluminum oxide, layer silicates) Fe(II) complexants on the long-term microbial reduction of synthetic goethite by Shewanella alga strain BrY was studied. NTA enhanced goethite reduction by promoting aqueous Fe(II) accumulation, in direct proportion to its concentration in culture medium (0.01-5 mM). In contrast, EDTA failed to stimulate goethite reduction at concentrations e1 mM, and 5 mM EDTA enhanced the final extent of reduction by only 25% in relation to nonchelator controls. The minor effect of EDTA compared to NTA, despite the greater stability of the Fe(II)- EDTA complex, likely resulted from sorption of Fe(II)- EDTA complexes to goethite. Equilibrium Fe(II) speciation calculations showed that Fe(II)aq should increase with NTA at the expense of the solid-phase Fe(II) species, whereas the opposite trend was true for EDTA due to Fe(II)EDTA adsorption. The presence of aluminum oxide and layer silicates led to a variable but significant (1.5 to \u3e 3-fold) increase in the extent of goethite reduction. Speciation of Fe(II) verified the binding of Fe(II) by these solid-phase materials. Our results support the hypothesis that iron(III) oxide reduction may be enhanced by aqueous or solid-phase compounds which prevent or delay Fe(II) sorption to oxide and FeRB cell surfaces

    Identification of Solubility-Controlling Solid Phases in a Large Fly Ash Field Lysimeter

    Get PDF
    Samples of pore fluids and leachates were obtained from a large fly ash field lysimeter in central Pennsylvania. The fly ash in the lysimeter was usually only partially saturated, and only 0.3 pore volumes of water leached through the lysimeter during the 3-year study period. The samples were analyzed for major and trace inorganic anions and cations. The resulting analyses were modeled by using an equilibrium speciation/solubility code to test the hypothesis that the solubilities of at least some species in the fly ash leachate were controlled by solid phases. Potential solubility-controlling solids were identified for Al, Ba, Ca, Cr, Cu, Fe, S, Si, and Sr in the pore waters and leachates. Solid solutions appear to play an important role in controlling the concentrations of Ba, Sr, and Cr. The activity relationships were independent of location within the lysimeter and time of sampling. A laboratory experiment showed that equilibration times between these nine elements and their solubility-controlling solids were on the order of days or less. Geochemical reactions controlling the concentrations of As, B, Cd, Mo, and Se were not identified

    Identification of Solubility-Controlling Solid Phases in a Large Fly Ash Field Lysimeter

    Get PDF
    Samples of pore fluids and leachates were obtained from a large fly ash field lysimeter in central Pennsylvania. The fly ash in the lysimeter was usually only partially saturated, and only 0.3 pore volumes of water leached through the lysimeter during the 3-year study period. The samples were analyzed for major and trace inorganic anions and cations. The resulting analyses were modeled by using an equilibrium speciation/solubility code to test the hypothesis that the solubilities of at least some species in the fly ash leachate were controlled by solid phases. Potential solubility-controlling solids were identified for Al, Ba, Ca, Cr, Cu, Fe, S, Si, and Sr in the pore waters and leachates. Solid solutions appear to play an important role in controlling the concentrations of Ba, Sr, and Cr. The activity relationships were independent of location within the lysimeter and time of sampling. A laboratory experiment showed that equilibration times between these nine elements and their solubility-controlling solids were on the order of days or less. Geochemical reactions controlling the concentrations of As, B, Cd, Mo, and Se were not identified

    Influence of Aqueous and Solid-Phase Fe(II) Complexants on Microbial Reduction of Crystalline Iron(III) Oxides

    Get PDF
    The influence of aqueous (NTA and EDTA) and solidphase (aluminum oxide, layer silicates) Fe(II) complexants on the long-term microbial reduction of synthetic goethite by Shewanella alga strain BrY was studied. NTA enhanced goethite reduction by promoting aqueous Fe(II) accumulation, in direct proportion to its concentration in culture medium (0.01-5 mM). In contrast, EDTA failed to stimulate goethite reduction at concentrations e1 mM, and 5 mM EDTA enhanced the final extent of reduction by only 25% in relation to nonchelator controls. The minor effect of EDTA compared to NTA, despite the greater stability of the Fe(II)- EDTA complex, likely resulted from sorption of Fe(II)- EDTA complexes to goethite. Equilibrium Fe(II) speciation calculations showed that Fe(II)aq should increase with NTA at the expense of the solid-phase Fe(II) species, whereas the opposite trend was true for EDTA due to Fe(II)EDTA adsorption. The presence of aluminum oxide and layer silicates led to a variable but significant (1.5 to \u3e 3-fold) increase in the extent of goethite reduction. Speciation of Fe(II) verified the binding of Fe(II) by these solid-phase materials. Our results support the hypothesis that iron(III) oxide reduction may be enhanced by aqueous or solid-phase compounds which prevent or delay Fe(II) sorption to oxide and FeRB cell surfaces

    The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA22 to goethite and a subsurface sediment

    Get PDF
    Laboratory experiments were conducted with suspensions of goethite (α-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA2-, a representative metal-ligand complex of intermediate stability (log KCo(II)EDTA = 17.97). The goethite was synthetic (ca. 55 m2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimilatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co2+, Fe2+, Co(II)EDTA2-, and Fe(II)EDTA2- on the two sorbents in 0.001 mol/L Ca(ClO4)2 to aid in experiment interpretation. Anoxic suspensions of the sorbents in PIPES buffer at pH 6.5–7.0 were spiked with Co(II)EDTA2- (10-5 mol/L, 60Co and 14EDTA labeled), inoculated with BrY (1–6 X 108 organisms/mL), and the headspace filled with a N2/H2 gas mix. The experiments were conducted under non-growth conditions. The medium did not contain PO43- (with one exception), trace elements, or vitamins. The tubes were incubated under anoxic conditions at 25°C for time periods in excess of 100 d. Replicate tubes were sacrificed and analyzed at desired time periods for pH, Fe(II)TOT, Fe(aq)2+ , 60Co, and 14EDTA. Abiotic analogue experiments were conducted where Fe(aq)2+ was added in increasing concentration to Co(II)EDTA2-/mineral suspensions to simulate the influence of bacterial Fe(II) evolution. The DIRB generated Fe(II) from both goethite and the Milford sediment that was strongly sorbed by mineral surfaces. Aqueous Fe2+ increased during the experiment as surfaces became saturated; Fe(aq)2+ induced the dissociation of Co(II)EDTA2- into a mixture of Co2+, Co(II)EDTA2-, and Fe(II)EDTA2- (log KFe(II)EDTA = 15.98). The extent of dissociation of Co(II)EDTA2- was greater in the subsurface sediment because it sorbed Fe(II) less strongly than did goethite. The post dissociation sorption behavior of Co2+ was dependent on pH and the intrinsic sorptivity of the solid phases. Dissociation generally lead to an increase in the sorption (e.g., Kd) of Co2+ relative to EDTA4- (form unspecified). Sorbed biogenic Fe(II) competed with free Co(aq) 2+ and reduced its sorption relative to unreduced material. It is concluded that cationic radionuclides such as 60Co or 239/240Pu, which may be mobilized from disposed wastes by complexation with EDTA4-, may become immobilized in groundwater zones where dissimilatory bacterial iron reduction is operative
    • …
    corecore