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Abstract

A theoretical and experimental study of cation exchange in high ionic strength electrolytes was

performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site.

These sediments are representative of the site contaminated sediments impacted by release of high

level waste (HLW) solutions containing 137Cs+ in NaNO3 brine. The binary exchange behavior of

Cs+–Na+, Cs+–K+, and Na+–K+ was measured over a range in electrolyte concentration. Vanselow

selectivity coefficients (Kv) that were calculated from the experimental data using Pitzer model ion

activity corrections for aqueous species showed monotonic increases with increasing electrolyte

concentrations. The influence of electrolyte concentration was greater on the exchange of Na+–Cs+

than K+–Cs+, an observation consistent with the differences in ion hydration energy of the

exchanging cations. A previously developed two-site ion exchange model [Geochimica et

Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in

the exchanger phase through application of the Gibbs–Duhem equation. This water activity-corrected

model well described the ionic strength effect on binary Cs+ exchange, and was extended to the

ternary exchange system of Cs+–Na+–K+ on the pristine sediment. The model was also used to

predict 137Cs+ distribution between sediment and aqueous phase (Kd) beneath a leaked HLW tank in

Hanfordd’s S-SX tank using the analytical aqueous data from the field and the binary ion exchange

coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data

and were improved by consideration of water activity effects that were considerable in certain regions

of the vadose zone plume.
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1. Introduction

The cation exchange of Cs+ to layer silicates and soils is typically represented by a

mass action equation of the following form (Bradbury and Baeyens, 2000; Brouwer et al.,

1983; Comans et al., 1991; Cornell, 1993; Cremers et al., 1988; Eberl, 1980; Poinssot et

al., 1999; Zachara et al., 2002):

uCsþðaqÞ þ AXu ¼ uCsXþ Auþ
ðaqÞ ð1Þ

where u is the valence of ionic species A; AXu and CsX are the exchanger phase species of

Au + and Cs+; and Cs+ and Au + are aqueous species. The equilibrium exchange constant

(Kex) for reaction (1) is defined as:

Kex ¼ ðauCsX=aAXu
ÞðaAuþ=auCsþÞ ð2Þ

where ai represents the activity of species i. It is also convenient to define a Vanselow

selectivity coefficient (Kv):

Kv ¼ ðN u
Cs=NAÞðaAuþ=auCsþÞ ð3Þ

where NCs and NA are the mole fractions of exchanger phase species Cs+ and Au +. The Ni

is defined to be,

Ni ¼ ni=
XM
j¼1

nj i ¼ 1; 2; . . . ;M ð4Þ

where ni is the mole number of cation species i and M is the number of cation species in

the exchanger phase. The mole fraction and activity of species i in the exchanger phase is

related by a rational activity coefficient,

fi ¼ ai=Ni: ð5Þ

The Kv equals Kex if the exchange is ideal (i.e., fi = 1, i= 1, 2, . . .M). The experimental

Kv is computed from the experimentally measurable conditional constant (Kc) corrected

for aqueous activity. The conditional constant is typically defined as:

Kc ¼ ðNu
Cs=NAÞðCAuþ=Cu

CsþÞ ð6Þ

where Ci represents aqueous concentration of species i.

Cesium adsorption by layer silicates and the phyllosilicate fraction of soils and

sediments has often been described as a cation exchange process on two or more sites

with distinctly different selectivity (Bradbury and Baeyens, 2000; Brouwer et al., 1983;

Cremers et al., 1988; Poinssot et al., 1999; Zachara et al., 2002). Generally, the high

affinity sites are believed to reside along the weathered periphery of 1.0 nm micas and

illites (Cornell, 1993; Cremers et al., 1988; Sawhney, 1972), while lower selectivity sites

are contributed by the basal and interlamellar regions of expansible (smectites) and

partially expansible (vermiculites) layer silicates. Multiple site adsorption models em-
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bodying mass action relationships on these distinct ion exchange sites have provided

reasonable simulations of the effects of Cs+ and electrolyte concentration on Cs+ sorption

(Bradbury and Baeyens, 2000; Brouwer et al., 1983; Cremers et al., 1988; Poinssot et al.,

1999; Zachara et al., 2002).

The underlying assumption in the multiple-site Cs+ adsorption models has been that the

exchange process on each site is ideal. When an exchange process is ideal, the solid phase

activities equal their mole fractions on the exchanger, and Vanselow selectivity coefficient

equals the exchange constant, i.e., Kv =Kex. Vanselow selectivity coefficients for Cs+

exchange on illite and sediment, however, have been observed to vary by factors of 10 or

more (Brouwer et al., 1983; Zachara et al., 2002) with changing electrolyte concentration

indicating exchange nonideality. The nonideality may result from the inadequate consid-

eration of aqueous phase complexation and ion association, or from phenomena associated

with the exchanger phase such as sorption site heterogeneity, cation demixing (segrega-

tion), or interlayer swelling/contraction resulting from changes in water activity (Fletcher

and Townsend, 1981; Grant and Fletcher, 1993). The nonideality resulting from inade-

quate consideration in aqueous phase was typically corrected using more accurate aqueous

speciation and ion–ion interaction model, such as Pitzer model (Pitzer, 1994). The

nonideal behavior associated with the exchanger phase may be described with thermody-

namic excess Gibbs-free energy functions (e.g. Elprince and Babcock, 1975; Grant and

Fletcher, 1993; Sposito, 1981; Wilson, 1964).

Previously, we have identified the mineralogic residence of high and low affinity

Cs+ exchange sites in uncontaminated subsurface sediment from the U.S. DOE

Hanford site, and modeled Cs+–Na+ and Cs+–K+ adsorption to the sediment using

a two-site model under the ideal exchange assumption (Zachara et al., 2002). The ratio

of solution phase activity coefficients (e.g., cCs+/cNa+ or cCs+/cK+) was approximated

as unity, based on the Debye–Huckel equation for the homovalent exchanging ions,

and the ratio of exchanger phase activity coefficients (e.g., fCs/fNa or fCs/fK) was also

assumed to be unity. However, after including the effects of ion–ion interaction in the

aqueous phase using the Pitzer model (Pitzer, 1994), the Vanselow selectivity

coefficients for Cs+–Na+ and Cs+–K+ exchanges showed a monotonic increase with

increasing electrolyte concentration, indicating that the Cs exchanges are nonideal in

the exchanger phase. This paper describes the influence of electrolyte concentration on

the nonideality in the exchanger phase as a water activity effect, and incorporates water

activity into a multi-site Cs+ adsorption/exchange model. This ‘‘water activity-cor-

rected’’ model is shown to yield improved predictions of 137Cs+ distribution beneath a

leaked HLW waste tank at Hanford where the discharged waste solution was a 137Cs+-

containing NaNO3 brine.

2. Theory

For a binary cation exchange reaction of Bv + replacing Au + in the exchanger, the

relationship between Kv and Kex may be written as,

Kv ¼ Kexf
v
A=f

u
B ð7Þ
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The differential form of the natural logarithm of Eq. (7) may be stated as:

dlnKv ¼ vdlnfA � udlnfB ð8Þ

Note that Kex is a constant. The Gibbs–Duhem equation for the exchanger is given by

(Grant and Fletcher, 1993; Sposito, 1981):

NAdlnð fANAÞ þ NBdlnð fBNBÞ þ nwV dlnaw ¼ 0 ð9Þ

where nwV is the ratio of number of moles of water versus total moles of cations in the

exchanger phase; and aw is the water activity in the exchanger. For a binary system,

NA +NB = 1. The combination of Eqs. (8) and (9) leads to the expressions (Grant and

Fletcher, 1993; Sposito, 1981):

udlnfB þ dðð1� EBÞlnKvÞ ¼ �lnKvdEB � uvnwdlnaw ð10Þ

vdlnfA � dðEBlnKvÞ ¼ �lnKvdEB � uvnwdlnaw ð11Þ

where EB and nw are the equivalents of BXv and the number of moles of water in the

exchanger, divided by the total equivalents of cation exchange capacity (CEC), respec-

tively. The left hand sides of Eqs. (10) and (11) are exact differential, so must be the right

hand sides. A necessary mathematical condition for the right hand side to be an exact

differential is:

BlnKv

Blnaw

� �
EB

¼ uv
Bnw

BEB

� �
aw

ð12Þ

Eq. (12) indicates that ln Kv and nw are functions of water activity (ln aw) and chemical

composition (EB). Generally, these functions have to be determined experimentally. Once

Kv and nw are known as functions of water activity and chemical composition, Eqs. (10)

and (11) can be used to evaluate the rational activity coefficients. The most common

approach used to evaluate the rational activity coefficients is to integrate Eqs. (10) and (11)

in two steps from the Reference State to a state at which the experiment was performed

(e.g.,Grant and Fletcher, 1993; Sposito, 1981). Note that integration of an exact differential

equation (e.g., Eq. (10) or Eq. (11)) is independent of integration paths. The Reference

State for a cation exchange species (e.g., AXu or BXv) is defined as the homoionic form of

the exchanger at equilibrium with an infinitely dilute aqueous solution of the exchanging

cation (e.g., Bv + or Au +) at 298.15 K and 1 atm pressure (Gaines and Thomas, 1953) (Fig.

1). At this reference state, the activities of both cation and water in the exchanger phase are

defined to be unity (Gaines and Thomas, 1953). From this definition, the reference state of

water activity is the same in the aqueous and exchanger phase. We assume that there are no

temperature and pressure changes during following analysis. Under this condition, the

equilibrium water activity will be the same between aqueous and exchanger phases. We

will, therefore, make no difference of water activity in aqueous and exchanger phases in

following analysis.

The first integration step starts from the Reference State to a state characterized by: (i)

unit mole fraction of the exchanger component of interest (e.g., homoionic exchanger BXv
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or AXu), and (ii) a water activity corresponding to the total electrolyte normality at which

the experiment is performed (Fig. 1). Specifically, in this step, Eq. (10) is integrated with

ln aw from 0 to ln aw(B) at a fixed EB = 1 and Eq. (11) is integrated with ln aw from 0 to ln

aw(A) at a fixed EB = 0. aw(A) and aw(B) are the water activities in the homoionic

exchangers AXu and BXv, respectively, at the total electrolyte normality at which the

experiment is performed. The second step integrates from the final state of step 1 to a state

characterized by the chosen exchanger composition (EB) along a line with a constant total

normality of electrolyte concentration (Fig. 1).

These two-step integration scheme yields the following relationships:

ulnfB þ ð1� EBÞlnKv ¼ �
Z ðEB;lnawðABÞÞ

ð1;lnawðBÞÞ
lnKvðEBV; lnawVÞdEBV

� uv

Z lnawðBÞ

0

nwðEB ¼ 1; lnawVÞdlnawV
"

þ
Z ðEB;lnawðABÞÞ

ð1;lnawðBÞÞ
nwðEBV; lnawVÞdlnawV

#
ð13Þ

vlnfA � EBlnKv ¼ �
Z ðEB;lnawðABÞÞ

ð0;lnawðAÞÞ
lnKvðEBV; lnawVÞdEBV

� uv

Z lnawðAÞ

0

nwðEB ¼ 0; lnawVÞdlnawV
"

þ
Z ðEB;lnawðABÞÞ

ð0;lnawðAÞÞ
nwðEBV; lnawVÞdlnawV

#
ð14Þ

Fig. 1. A conceptual model showing the Reference States for adsorbed species in the exchanger and integral paths

to estimate activity coefficients of the exchange species AXu.
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where EBV and ln awV are the dummy variables for equivalent fraction of BXv and natural

logarithm of water activity, respectively. Combining Eqs. (7), (13), and (14), one obtains,

lnKex ¼
Z ð1;lnawðBÞÞ

ð0;lnawðAÞÞ
lnKvðEBV; lnawVÞdEBV

þ uv

Z lnawðAÞ

0

nwðEB ¼ 0; lnawVÞdlnawV

� uv

Z lnawðBÞ

0

nwðEB ¼ 1; lnawVÞdlnawV

þ uv

Z ð1;lnawðBÞÞ

ð0;lnawðAÞÞ
nwðEBV; lnawVÞdlnawV ð15Þ

Note that the first integrals on the right hand sides of Eqs. (15)–(17) were written

differently from those in (Grant and Fletcher, 1993; Sposito, 1981; Gaines and Thomas,

1953) where water activity was not included in the two end states of the integral. Water

activity was included here to emphasize its effects on the value of the integral. The

effects of variable nw on the integral values in Eqs. (13)–(15) are usually neglected

(Sposito, 1981) due to the difficulty in its measurement and the fact that the terms

related to nw for Kex evaluation (last three terms in the right hand side of Eq. (15)) often

mutually cancel (Barrer and Klinowski, 1974). However, the individual rational activity

coefficients [Eq. (13) or Eq. (14)] may be significantly affected by the water content

terms [last two terms in the right hand side of Eq. (13) or Eq. (14)] (Barrer and

Klinowski, 1974).

In the current case of Cs+ exchange, the water content terms will be shown to be

important in that the changes of Kv with electrolyte concentration parallel changes in water

activity. In order to evaluate the integrals in Eqs. (13)–(15), one has to find the

relationship between water activity and EB at the normality at which the experiment

was performed. This point becomes apparent if one draws the integral path for step 2

(Solid line in Fig. 1) used to obtain the rational activity coefficient fA. Fig. 1 shows that the

integral step 2 is generally not a straight line from EB = 0 to EB under a constant electrolyte

normality.

Here, we utilized an alternative integral path (short dashed line in Fig. 1) for Eqs.

(10) and (11), that follows a constant water activity line from a state characterized by

unit mole fraction of the exchanger component of interest, to the chosen exchange

composition. Using this integral path, we obtained the following alternative integral

expressions:

ulnfB � ulnf
p
B ðlnawÞ ¼ �ð1� EBÞlnKvðEB; lnawÞ �

Z EB

1

lnKvðEBV; lnawÞdEBV ð16Þ

vlnfA � vlnf
p
AðlnawÞ ¼ EBlnKvðEB; lnawÞ �

Z EB

0

lnKvðEBV; lnawÞdEBV ð17Þ
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lnKex ¼
Z 1

0

lnKvðEBV; lnawÞdEBVþ lnðð f pB ðlnawÞÞ
u=ð f pAðlnawÞÞ

vÞ ð18Þ

where fB
p (ln aw) and fA

p (ln aw) are activity coefficients for the homoionic BXv and

AXu exchangers at the water activity of aw, respectively.

Compared with Eqs. (13)–(15), the current approach can avoid: (i) measuring the water

content in the exchanger as a function of water activity in the mixed electrolyte, and (ii)

evaluating the relationship between water activity and EB. The Kv can be estimated as a

function of EB and ln aw from exchange experiments with variable ionic strength (or water

activity). However, in choosing a functional form of Kv to fit experimental data, Eq. (18)

serves as a constraint to the water activity contribution to Kv because Kex must be a

constant. In other words, the Kv determined from experimental data as a function of

composition and water activity in the exchanger contains the information of ( fB
p (ln aw))

u/

( fA
p (ln aw))

v. Alternatively, one can experimentally evaluate the activity coefficients

independently, fB
p (ln aw) and fA

p (ln aw), using the following formula:

ulnf
p
B ðlnawÞ ¼ �uv

Z lnaw

0

nBwðlnawVÞdlnawV ðEB ¼ 1Þ ð19Þ

vlnf
p
AðlnawÞ ¼ �uv

Z lnaw

0

nAwðlnawVÞdlnawV ðEB ¼ 0Þ ð20Þ

where nw
B or nw

A denotes the number of moles of water per equivalent exchange capacity in

the homoionic exchanger of BXv or AXu. Eqs. (19) and (20) were derived by integrating

Eqs. (10) and (11) along a pure BXv or AXu line from the Reference State to a water

activity of interest.

Although Eqs. (16)–(20) were derived for the overall exchange of B for A, these

relationships also hold for mass action on individual sites as long as there is no interaction

energy between them. We define ‘‘site’’ as a homogeneous group of exchange locations

where the sorbate–sorbent interaction energy is the same under constant water activity

(e.g., the high and low affinity sites used in past Cs+ adsorption modeling). According to

this definition, nonideal behavior at an individual site can only be caused by ion hydration

effects as a function of water activity because Kv at individual site will be only a function

of water activity (lnaw), but not a cation fraction (EB) in the exchanger phase.

3. Materials and methods

3.1. Sediment recovery and preparation

The collection, preparation, and processing methods for the subsurface sediment used

in this study were detailed in Zachara et al. (2002). Briefly, a sample of uncontaminated

Hanford sediment representative of the 10 m below leaked tanks in the S-SX tank farm

(termed as the ‘Above B’ composite) was made by compositing core samples from

monitoring wells surrounding the S-SX tank farm. The sediments were air-dried and
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sieved to remove the >2 mm fraction and homogenized. The sediments were treated with 1

mol/l sodium acetate (NaOAc) at pH 5.0 (with acetic acid) to remove carbonates and

soluble salts. The mineralogy of untreated sediments was determined by optical and X-ray

diffraction analysis. The cation exchange capacity (CEC) of the treated homoionic

sediments was measured in Na+ and K+ electrolytes. The CEC varied by a factor of

approximately 2 in the different electrolytes. In the following analysis, the CEC

determined in K+ electrolyte (8.25� 10� 5 equivalent/g) was used as the total site

concentration. The CEC determined in K+ electrolyte was larger than measured in Na+

electrolyte.

3.2. Binary exchange

Binary ion exchange experiments of Cs–Na and Cs–K were previously preformed with

a wide range of Cs+ concentrations on homoionic Na+ and K+ sediments, yielding

experimental Kc functions versus mole or equivalent fraction occupation of the exchanger

by Cs+ (Zachara et al., 2002). However, the previous analyses of Cs+ exchange on Hanford

sediment relied on the use of a conditional equilibrium constant (Kc) where concentration

terms, rather than activities, were used in the equilibrium quotient. We rationalized this

approach for homovalent exchange (e.g., Cs+ for Na+, and Cs+ for K+) by suggesting that

the ratio of activity coefficients: cCs+/cNa+ or cCs+/cK+c 1 under the used experimental

conditions. Because the electrolyte concentrations used in those experiments were quite

high (up to 5 mol/l NaNO3 and 1 mol/l KNO3), the activities of aqueous species were re-

calculated here using the Pitzer ion–ion interaction model (Pitzer, 1994). These activities

for Cs+ and the electrolyte ions (Na+ and K+) were used in the recalculation of Vanselow

selectivity coefficients (Kv) that are reported here.

New experiments of the ion exchange between K+ and Na+ were performed on the

Hanford sediment in both NaNO3 and KNO3 electrolytes under conditions similar to those

in Zachara et al. (2002). Potassium adsorption was determined on the NaOAc-treated

‘Above B’ sediment in three electrolyte solutions: 1.0, 0.1 and 0.01 mol/l NaNO3. The

Na+-saturated sediment, KNO3 spike, and NaNO3 electrolyte were equilibrated overnight

(f 16 h) in Oakridge polycarbonate tubes in a controlled environmental shaker at 30 jC
and 70 rpm. After equilibration, the suspensions were filtered (0.2 Am) into a polystyrene

tube for analysis after discarding the first 15 drops of filtrate. The potassium was measured

by inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Sodium adsorption on K+-saturated sediment was evaluated in three electrolyte

solutions: 1, 0.1 and 0.01 mol/l KNO3. The NaOAc-extracted ‘Above B’ sediment was

saturated with K+ by placing 50 g of the sediment in SpectraPorR 7 dialysis tubing with

100 ml of 0.1 mol/l KNO3 and dialyzed against 3.5 l of 0.1 mol/l KNO3. The sediment was

dialyzed for 5 days with daily replacements of the KNO3 solution, and then for 7 days with

daily replacements of deionized water. The sediment was transferred to a plastic jar and

dried at 35 jC. The K+-treated sediment, NaNO3 spike solution, and KNO3 electrolyte

were equilibrated under the same conditions as in K+ adsorption experiments. The Na+

adsorption was monitored by measuring 22Na (NEN Life Science Products; Boston, MA),

which was added in the NaNO3 spike solution (500–833 Bq/ml). Following equilibration,

the suspensions were filtered (0.2 Am) and collected into subsamples after discarding the
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first 15 drops of filtrate. One subsample was collected in a tared plastic gamma-count tube,

and the other in a polystyrene tube for ICP-AES analysis of [Na+] and [K+]. The gamma

count tube was re-weighed to determine the sample mass. The 22Na-activity in the filtrate

was determined using a Wallac gamma counter (model 1480) with an 80-mm NaI crystal

detector.

3.3. Binary data analysis

Aqueous speciation, activity coefficients, and water activity in the aqueous phase were

calculated for each exchange sample in Zachara et al. (2002), and in the Na+ and K+

exchange experiments performed here, using measured aqueous concentrations and a

computerized chemical equilibrium program, GMIN (Felmy, 1995), which incorporated

the Pitzer model (Pitzer, 1994). The binary and mixed Pitzer parameters for the Cs+, Na+,

and K+ system used in the database are summarized in Table 1. GMIN uses a free energy

minimization approach (Felmy, 1995) and the free energy of formation of the species used

in the calculation are also included in Table 1. As mentioned before, the water activity is

the same in exchanger and aqueous phases at equilibrium based on the definition of the

exchanger Reference State. The water activity calculated from aqueous speciation model

was, therefore, directly used for the exchanger phase in the following analysis.

3.4. Recovery and analysis of Cs-contaminated sedimentary samples

A core was collected and analyzed from beneath a high level waste tank (SX-108) that

had leaked approximately 58 m3 of highly alkaline NaNO3 brine containing 1.51�1015

Bq of 137Cs (Jones et al., 2000) in the late 1960s. The subsurface sediments contain micas

(biotite, muscovite), vermiculite, and smectite as defined in Zachara et al. (2002). The

electrolyte concentration (NaNO3) in the waste supernatant at the time of leakage is not

known with certainty but has been estimated as 19 mol/l (Lichtner, 2001). The waste

solutions were hot (c 100 jC) as a result of radioactive decay. Core samples from beneath

the tank were collected in the summer of 2000 and analyzed for the concentrations of

water soluble and total contaminants (Serne et al., 2001). The in-ground temperatures were

still elevated at sampling time with the highest temperature of 73 jC at 30 m below ground

surface (bgs).

Table 1

Thermodynamic data for aqueous Cs+, Na+, K+, and NO3
� system (25 jC)

Binary Pitzer parameters b(0) b(1) Cf

NaNO3
a 0.00655 0.2561 0

KNO3 � 0.0816 0.0494 0.00660

CsNO3 � 0.0758 � 0.0669 0

Mixing parameters

hNaK =� 0.012; uNaCs =� 0.0153; uKCs =� 0.0049;

Free energy of formation (DGo/RT)

Na+ =� 105.651; K+ =� 113.957; Cs+ =� 119.966;

NaNO3 =� 145.500

a Parameters considered ion-pair of NaNO3.
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The measured pore water composition (Serne et al., 2001) were used to calculate

speciation and activities of water and aqueous species using GMIN computer code and its

database (Felmy, 1995) with aqueous activity coefficients calculated by the Pitzer model.

This calculation included all significant porewater electrolyte species (e.g., K+, Na+, Ca2 +,

Mg2 +, SO4
2�, Cl�, and NO3

�) and Cs+. The activities of the calculated water and aqueous

species were then used to predict the Cs sorption in the contaminated sediment based on

the Cs ion exchange model and parameters characterized from the binary experiments

performed using pristine ‘‘Above B Composite’’.

4. Results and discussion

4.1. Ion exchange of Cs+ for K+ and Cs+ for Na+

The selectivity coefficients (Kv) for Cs
+ exchange on K+- and Na+-saturated sediments

varied with Cs+-adsorption density and electrolyte concentration (Fig. 2). The selectivity

coefficients increased with an increase in electrolyte concentration. This effect was

observed even at lower electrolyte concentrations (from 0.01 to 0.1 mol/l). Similar

experimental results were observed in Brouwer et al. (1983) where the Cs+ selectivity

coefficients on Na+ and K+ illite increased with increasing electrolyte concentration from

0.002 to 0.02 mol/l. The overall selectivity coefficients (Kv) (Fig. 2) at each electrolyte

concentration were consistent with a two-site, exchange model (Zachara et al., 2002), with

the overall selectivity coefficient expressed by:

KvðECsÞ ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4KI

vK
II
v ECsð1� ECsÞ

q	 

=ð2� 2ECsÞ ð21Þ

where b=(EI�ECs)Kv
I+(1�EI�ECs)Kv

II; Kv
I and Kv

II are the selectivity coefficients for sites

I and II, respectively; and EI is the fraction of the sediment CEC contributed by site I.

The two-site model well described the experimental results (solid line in Fig. 2). The

modeling was performed by individually adjusting Kv
I and Kv

II in Eq. (21) for each

exchange isotherm, while maintaining a single best fit value of EI (4.5� 10� 4) for all

isotherms. The values for Kv
I and Kv

II are summarized in Table 2 and plotted in Fig. 3.

The values of the fitted selectivity coefficients for the individual sites (Kv
I and Kv

II)

increased with increasing NaNO3 and KNO3 concentration (Fig. 3). The extent of change

in the selectivity coefficients was greater in Na+- than K+-electrolyte, as also observed in

Brouwer et al. (1983). These electrolyte differences were consistent with the hydration

energy of the exchanging ions: Na+>K+>Cs+.

The fitted Kv values (Table 2, Fig. 3) can be used to estimate the difference of moles of

water per equivalent exchange capacity associated with exchanging cations (e.g.,

nw
Na� nw

Cs) at each exchange site as follows. Applying (Eq. (18)) to the individual exchange

site and considering Eqs. (19) and (20) for monovalent exchange, we obtained:

lnK i
vðlnawÞ ¼ lnK i

ex þ
Z lnaw

0

½ni;Csw ðlnawVÞ � ni;Aw ðlnawVÞ�dlnawV ð22Þ
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where i denotes site I or II. After averaging Eq. (22) along a constant electrolyte

concentration (note that Kv
i values in Table 2 were estimated from experiments performed

at constant electrolyte concentration), the difference of ln Kv
i at two ionic strengths can be

expressed as:

lnK i
vðI2Þ � lnK i

vðI1Þ ¼ ðn̄i;Csw � n̄i;Aw ÞðlnāwðI2Þ � lnāwðI1ÞÞ ð23Þ

Fig. 2. Cs+ exchange selectivity coefficients on Hanford sediment in Na+ (a) and K+ (b) electrolyte as a function

of ionic strength and exchange composition. Each isotherm was fitted by a two-site model (text).
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where I1 and I2 are the ionic strengths 1 and 2, respectively, and n̄i;Aw and n̄i;Csw are the

number of moles of water per equivalent exchange capacity at site i for homoionic AX

and CsX, respectively, averaged from lnāwðI1Þ to lnāwðI2Þ. The mean water activity (āw)

was averaged from ECs = 0 to ECs = 1 along a constant electrolyte concentration. Eq. (23)

was then used to estimate Dnw
i (e.g., n̄i;Naw � n̄i;Csw ) (i = I, II) using the fitted Kv

i values and

calculated water activity from the Pitzer model at different electrolyte concentrations

(Table 2). The estimated n̄Naw � n̄Csw was 45 and 28 and n̄Kw � n̄Csw was 11 and 14 at sites I

and II, respectively, over the ionic strength range from 0.01 to 1. The Dnw (e.g., n̄Naw
�n̄Csw ) decreased with increasing water activity (lnāw) in accordance with the smaller

increase in Kv with increasing electrolyte concentration (Fig. 3). However, the trend

Table 2

Fitted parameters for individual isotherms

Cs–K Cs–Na K–Naa

log Kv
I log Kv

II log Kv
I log Kv

II log Kv
I log Kv

II

0.01 M 4.503F 0.024 0.891F 0.012 6.429F 0.064 1.749F 0.043 1.926 0.858

0.1 M 4.592F 0.015 0.956F 0.008 6.820F 0.052 1.979F 0.039 2.228 1.023

1 M 4.629F 0.015 1.064F 0.009 7.033F 0.047 2.121F 0.041 2.404 1.057

5 M 7.239F 0.029 2.302F 0.028

a Calculated from fitted Kv of Cs–Na and Cs–K. The numbers in () are standard deviations.

Fig. 3. Fitted selectivity coefficients as functions of water activity (or ionic strength).
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n̄Naw > n̄Kw > n̄Csw that was consistent with ionic hydration energy was maintained

throughout the analysis. Our derived/fitted water contents were consistent with (i)

theoretical calculations that showed that clay water content per equivalent exchange

capacity (nw) decreased during the replacement of Na+ by Cs+ (Eberl, 1980), and (ii)

experimental measurements of the water contents of zeolite, which showed n̄Naw > n̄Kw
(Barrer and Klinowski, 1974).

The individual site selectivity coefficients (Table 2) had a difference of up to 0.8 (4.5

kJ/eq) common logarithmic units (or energy) in the exchange of Cs+ for Na+ and 0.2 (1.1

kJ/eq) for Cs+–K+ exchange, within the measured range of electrolyte concentration.

These differences in Kv values were significant considering that experimental error in Kv

determination as less than 0.064 (0.36 kJ/eq) common logarithmic units (or energy) in the

exchange of Cs+ for Na+ and 0.024 (0.14 kJ/eq) in Cs+ for K+ (Table 2).

Eq. (22) indicated that the selectivity coefficient at an individual site at any water

activity can generally be described as:

logK i
vðlnawÞ ¼ logK i

ex þ F iðlnawÞ i ¼ I and II ð24aÞ

where F iðlnawÞ ¼ logemlnaw0 ½ni;Csw ðlnawVÞ � ni;Aw ðlnawVÞ�dlnawV. Because the Dniw (e.g., n̄i;Naw

�n̄i;Csw ) in Eq. (24a) and (24b) changes with ionic strength, nw
i,Cs (lnaw)� nw

i,A (lnaw) is not a

constant, and thus F i (lnaw) is not a linear function of lnaw. The function that best fitted the

observed relationship (Fig. 3) with the minimum number of parameters was:

F iðlnawÞ ¼ k i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnaw

p
=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnaw

p
Þ i ¼ 1 and II ð24bÞ

where k i is a fit parameter for site i.

Because Cs sorption is typically described by a distribution coefficient (Kd) of Cs

between exchanger and aqueous phases in practice, we derived a relationship between Kd

and Kv
i (i = I, II) for binary, monovalent exchange system:

KdðCsÞ ¼
XL
i¼1

Ni
CsE

iCEC=CCsþ ¼
XL
i¼1

Ki
vcCsþE

i

Ki
vaCsþ þ aAþ

� �
CEC ð25Þ

where L is the number of exchange sites (two for this case); cCs + is the activity coefficient

of Cs+ in aqueous phase; Ei is the equivalent fraction of site i, and NCs
i is the equivalent

fraction of Cs in exchanger site i. Other symbols are defined before.

Eq. (25) with Kv
i described by Eq. (24a) and (24b) and activity coefficients of Cs and

exchanging cations (Na+, K+) calculated from GMIN was used to simultaneously fit

experimental Kd results of Cs at variable ionic strengths by adjusting 3 parameters: Kex
I ,

Kex
II , and k [Kex

I and Kex
II are exchange constants at site I and II, respectively; k is assumed

to be the same on both sites because the Kv changes with water activity for sites I and II

were the similar (Fig. 3)]. An equivalent fraction of 4.5� 10� 4 was used for site I (E I) in

all the data analysis. Model (25) well described the ionic strength dependence of Cs

sorption (Fig. 4) with the fitted parameters listed in Table 3. The overall Kv values (not

shown) calculated using Eq. (21) with Kv
i calculated from Eq. (24a) and (24b) using the

fitted Kex
I , and Kex

II , and k (Table 3) were almost identical to the fitted Kv values in Fig. 2.
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4.2. Ion exchange of K–Na

Eq. (24a) and (24b) indicates that nonideality of binary cation exchange in the system

of Na+, K+, and Cs+ is independent of fractional site occupation (ECs
i ) on each site at a

Fig. 4. Experimental and modeling results of Cs+ distribution coefficient (Kd) as a function of aqueous Cs+

concentration and ionic strength. The experimental results were fitted simultaneously using a two-site model

corrected by a water activity effect. (a) Cs+ in KNO3 electrolyte and (b) Cs+ in NaNO3 electrolyte.

Table 3

Fitted parameters

log Kex
I log Kex

II k

Cs–K 4.502F 0.014 0.889F 0.010 1.139F 0.449

Cs–Na 6.637F 0.036 1.761F 0.034 2.259F 0.177

K–Naa 2.135 0.872 1.120

a Calculated from Cs–K and Cs–Na.
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constant water activity. Accordingly, the exchange constants (Kex
i ) for K+–Na+ on each

site must be the same as the Kex
i difference between Cs+–K+ and Cs+–Na+ exchanges. The

activity correction term for K+–Na+ with respect to water activity was also related to the

Cs+–K+ and Cs+–Na+ system in the following manner:

logðf i;pNa =f
i;p
K Þ ¼ logðf i;pNa =f

i;p
Cs Þ � logðf i;pK =f i;pCs Þ i ¼ I and II ð26Þ

where log( fNa
i,p/fCs

i,p) and log( fK
i,p/fCs

i,p) have been determined to be F i(lnaw) in Eq. (24a) and

(24b) for Na+–Cs+ and K+–Cs+ exchanges, respectively. We used Eq. (21) with its Cs

replaced by K, and the calculated exchange constants and the activity correction term

using Eq. (26) from Cs+–K+ and Cs+–Na+ exchanges (Table 3) to predict Na+–K+

exchange, which was compared with experimental results (Fig. 5).

In both NaNO3 and KNO3 electrolytes, we had difficulty achieving high enough Na+

adsorption densities, which examine the exchange behavior of the high affinity site. In the

KNO3 electrolyte, only a small amount of Na+ was adsorbed by the exchanger because of

the high selectivity of K+ for both exchange sites. In NaNO3 electrolyte, the smallest

adsorption density of K+ achieved was about 0.4% of total CEC or 3.33� 10� 7 mol/g.

However, this amount was still larger than the high affinity site capacity of 0.045% of

CEC. Consequently, the high affinity site was occupied by K+ in all the Na+–K+ exchange

experiments. Lower K+ concentrations could not be achieved because of K+ contamination

in the NaNO3 solution and continued trace K+ dissolution from orthoclase and biotite in

the soils. Therefore, our simulations of K+–Na+ exchange were performed on only the low

affinity site.

Fig. 5. Experimental and model predictions of Na+–K+ exchange showing potassium distribution as a function of

aqueous K+ and NaNO3 electrolyte concentrations.
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The ion exchange model using the parameters calculated from Cs+–Na+ and Cs+–K+

data (Table 2) generally predicted Na+–K+ exchange well (Fig. 5). The predictions were

better for the NaNO3 than the KNO3 electrolyte (not shown) because of the better

measurement statistics of the former system.

4.3. Prediction of Cs distribution in field

Because the binary exchange behavior of Cs+–Na+ and Cs+–K+ on the two individual

sites were independent of exchange composition, we felt justified in using the binary

exchange constants to forecast ternary exchange (Cs+–Na+–K+) in the field. Three

exchange reactions are needed to describe the ternary system (Fletcher and Townsend,

1981):

2NaXþ Kþ þ Csþ ¼ 2Naþ þ KXþ CsX ð27Þ

Naþ þ 2KXþ Csþ ¼ NaXþ 2Kþ þ CsX ð28Þ

Naþ þ Kþ þ 2CsX ¼ NaXþ KXþ 2Csþ ð29Þ

Because only two of these reactions are independent, we only considered reactions (27)

and (28) in the following analysis. The thermodynamic equilibrium constants, KT1 and

KT2, corresponding to these two reactions may be calculated from the binary reactions and

are defined as follows:

K i
T1 ¼

a2
Naþa

i
KXa

i
CsX

ðaiNaXÞ
2
aKþaCsþ

¼ K i
exðCs� NaÞK i

exðK � NaÞ i ¼ I; II ð30Þ

K i
T2 ¼

aiNaXa
2
KþaiCsX

aNaþðaiKXÞ
2
aCsþ

¼ K i
exðCs� KÞ=K i

exðK � NaÞ i ¼ I; II ð31Þ

where Kex
i (B�A) is the equilibrium constant of B (e.g., Cs+) to replace A (e.g.,

Na+) in the binary exchange reaction at site i (Table 3). Because the individual site

activity coefficients were independent of exchange composition but dependent on

water activity, the ternary selectivity (or Kielland) coefficient was estimated as

follows:

logK i
Ki ¼ log

a2
NaþN

i
KXN

i
CsX

ðNi
NaXÞ

2
aKþaCsþ

 !
¼ logK i

T1 þ log
f
i;p
Na ðlnawÞf

i;p
Na ðlnawÞ

f
i;p
K ðlnawÞf i;pCs ðlnawÞ

 !
i ¼ I; II

ð32Þ

logK i
K2 ¼ log

Ni
NaXa

2
KþNi

CsX

aNaþðNi
KXÞ

2
aCsþ

 !
¼ logK i

T2 þ log
f
i;p
K ðlnawÞf i;pK ðlnawÞ
f
i;p
Na ðlnawÞf

i;p
Cs ðlnawÞ

 !
i ¼ I; II

ð33Þ
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The second term on the right hand side is a function of ln aw and can be evaluated

using water activity correction term F i(lnaw) (Eq. (24b)) from binary Na+–Cs+, K+–

Cs+, and Na+–K+ exchanges with k values listed in Table 3. Note that the

relationships (Eqs. (32) and (33)) apply specifically to the individual sites (e.g., high

and low affinity). The overall selectivity coefficient for the ternary system may be

calculated from Eqs. (32) and (33). The Kielland coefficients are related to Kd (Cs)

by a following equation:

KdðCsÞ ¼

XL
i¼1

Ni
CsE

iCEC

CCsþ

¼
XN
i¼1

CCsþ þ aKþ=cCsþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ki
K1K

i
K2K

i
K2

3
p þ aNaþ=cCsþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ki
K1K

i
K1K

i
K2

3
p

 !�1

EiCEC ð34Þ

The ternary exchange model (34) was applied to predict Cs distribution at a core

location beneath a high level waste tank (SX-108). Selected analytes in porewater of the

sediment in this core are shown in Fig. 6. Clearly defined are two peaks in NaNO3(aq), one

at depth of 25–31 m (12–16 mol/l) and another at 35–41 m with (3–5 mol/l). The peak

concentrations of NaNO3(aq) exceed the known, room temperature (25 jC) solubility of

NaNO3(s) (c 9 mol/l), apparently because in-ground temperatures are still elevated (73 jC
at 30 m). The low electrolyte concentrations in porewater from 17 to 22 m result from the

infiltration of meteoric waters after the tank leak event. The peak concentrations in 137Cs

occur at a shallower depth (e.g., 25 m) than that for NaNO3(aq) as a result of retardation by

ion exchange. The water soluble and total 137Cs activities in the various samples were used

to calculate in situ concentration distribution ratios (Kd, ml/g), Fig. 7a. The in situ Kds

varied by over four orders of magnitude, with the lowest values noted where NaNO3(aq)

was highest (25–31 m) as expected from mass action considerations.

Kd predictions (Fig. 7a) were made using KK values calculated from Kv values as a

function of ionic strength (Eq. (24a) and (24b)) (Model 1—water activity corrected), and

the ionic strength-averaged Kv values estimated from the binary system of exchange data

of Cs+–Na+ and Cs+–K+ (Model 2—not corrected for water activity). The Kd calculation

ignored the potential competitive effects of Ca2 + and Mg2 + because their concentrations

were quite low and swamped by Na+ and K+. The Kd calculation also assumed a single

value of CEC (8.25� 10� 5 eq/g) over the entire depth interval. We have measured CEC of

various samples from this sediment column and found that it did not vary appreciably

(F 20%). Water activity was computed to vary significantly with depth as a result of high

electrolyte concentration associated with the leaked HLW (Fig. 7b). Generally, the

predictions of both models were close to one another, except at locations of high ionic

strength and low water activity (e.g., 24–32 m). At these same locations, the water

activity-corrected model (Model 1) better described the field data, yielding Kd predictions

that were an order of magnitude closer to the field observation. These results indicated that

field distribution of Cs+ may be close to the ion exchange equilibrium state.
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Fig. 6. (a) Measured porewater concentrations of Na+, K+, Ca2 +, and NO3
� in sediments beneath leaked tank SX-

108 at Hanford. (b) Total 137Cs concentration in SX-108 sediments determined by gamma counting.
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Fig. 7. Measured and predicted vertical profiles of 137Cs–Kd (a) and calculated vertical profiles of water activity

and ionic strength (b) in 137Cs+-contaminated sediments beneath leaked tank SX-108 at Hanford.

C. Liu et al. / Journal of Contaminant Hydrology 68 (2004) 217–238 235



Many factors may have caused the noted discrepancies between the model predictions

and the experimental measurements of Kd (Fig. 7), but resolving the magnitude of their

effect is difficult. The simulated environment beneath Tank 108 is a harsh and complex

one. Down-hole measurements in a borehole near the location of the SX-108 core

indicated that the in situ temperature at depths of 15 to 35 m ranged between 50 and

70 jC, with a peak in temperature at depth of 23 m. This residual thermal load results from

waste-boiling in the tanks in the 1950s and 1960s that was driven by radioactive decay of

short-lived isotopes. Our ion exchange measurements were made at 30 jC, and no attempt

was made to temperature-extrapolate our calculations of aqueous speciation or Kex to

higher temperatures. We have, however, measured Na+–Cs+ exchange isotherms at higher

temperatures (45 and 60 jC) and observed relatively small enthalpy effects at low

adsorption density (data not shown). The Kd and Kv for Cs
+ decrease at higher temperature

(as compared to 30 jC) as a result of the exchange enthalpy effect. While we state above

that our calculations suggest that the in-ground Cs pool is in approximate exchange

equilibrium, we have also noted in other soon to be published findings (Liu et al., 2003)

that a fraction of the adsorbed 137Cs+ in these very same sediments is poorly exchangeable

(30–40%). Such incomplete exchangeability, as result of intraparticle diffusion and grain

armoring by secondary precipitates, would increase the measured Kd over that predicted

with an equilibrium model. This effect appears to be the primary cause of discrepancy. The

effects of temperature and incomplete exchange may have been compounded at the

shallow depths (e.g., 16–24 m) by significant mineral alteration (e.g., sorbent dissolution

or precipitation) resulting from waste–sediment reaction (Liu et al., 2003). Electron

microscopy of these sediments showed massive grain overgrowths by secondary alumi-

nosilicate precipitates (Liu et al., 2003), some of which were zeolite-like in composition

and morphology. In spite of these complications, however, we feel that our predictions of
137Cs–Kd near the core of the waste plume (23–32 m) are quite remarkable in their

approximation of the field data.

The numeric analyses performed in this study were based on a generalized thermo-

dynamic treatment of homovalent cation exchange using Gibbs–Duhem equation (Eq.

(6)), which only considered exchangeable cationic species and solvent effects (Grant and

Fletcher, 1993; Sposito, 1981). The ionic strength dependence of the selectivity

coefficients was described solely as an effect of hydration energy and water activity.

Other factors, such as anion and/or salt imbibement, however, could also affect the Cs+

selectivity coefficients. Salt imbibement appeared to be a negligible effect in the

laboratory exchange experiments because the solubility of the electrolytes was much

higher than the electrolyte concentrations used. Salt imbibement may be important in the

field where Na concentrations reached up to 15 mol/l at some locations. Anion

imbibement would affect the chemical potential of the exchanger phase. Anion inclusion

would increase the apparent cation exchange capacity to maintain charge neutrality. The

selectivity coefficients, which were calculated with a fixed CEC, would therefore

increase if anion inclusion was significant. Our noted increase in selectivity coefficient

with ionic strength (Fig. 3) could be explained by anion imbibement, if its magnitude

increased with the ionic strength. The fact that greater ionic strength effects were

observed for Cs+–Na+ exchange than Cs+–K+ exchange, however, argues against anion

imbibement. The small effects of ionic strength on the exchange of Cs+–Ca2 + (Brouwer
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et al., 1983; Zachara et al., 2002); and Cs+–Sr2 + and Cs+–Ba2 + (Brouwer et al., 1983)

also support this conclusion.

5. Conclusions

The ion exchange behavior of Cs+ in high concentration Na+ and K+ electrolytes (1–5

mol/l) was studied to provide insights on the sorptive retardation of 137Cs+ from high level

nuclear wastes (HLW) released to the vadose zone at the U.S. Department of Energy

Hanford site. At Hanford, over 1 million gallon of saline caustic HLW has leaked to the

vadose zone from aging single shell storage tanks, and considerable concern exists over

the subsurface migration of radioactive and chemical contaminants in these materials.

Cesium-137 is the radioactive constituent with the highest activity in the HLW, and

expedited migration of 137Cs+ has been observed beneath certain tanks.

The ion exchange behavior of Cs+ on Hanford sediment was significantly influenced by

electrolyte concentration. The cation exchange capacity (CEC, resulting from micas and

smectite) of the sediment was low (82.5 Aeq/g), but sufficient to induce high sorption

capacity for radiocesium. The Vanselow selectivity coefficient (Kv) increased with

increasing ionic strength in both Na+ and K+ electrolytes. The ionic strength effect was

greater for the exchange of Na+–Cs+ than for K+–Cs+, an observation consistent with the

hydration energies of the exchanging cations. A two-site ideal ion exchange model was

modified to include a water activity term for the exchanger phase through application of

the Gibbs–Duhem equation. This modified two-site model well described the electrolyte

concentration effect on binary, homovalent Cs+ exchange in Na+ and K+ electrolytes.

The ‘‘water activity-corrected model’’ yielded better predictions of in situ 137Cs+ Kd

values in a HLW-contaminated borehole than a comparable model without such correction.

The porewater concentrations of NaNO3 exceeded 15 mol/l in the core of the HLW, vadose

zone plume. These salt concentrations significantly depressed water activity. The two-site

water activity-corrected model embodies the minimum phenomenology needed to describe

the ion exchange retardation of 137Cs+ from the HLW brines that characterizes much of the

stored waste at the Hanford site. Our geochemical model provides a basis to forecast the

sorptive retardation 137Cs+ beneath the many leaked tanks where funds are not available

for subsurface sampling and analyses, and it is now being used for that purpose.
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