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PII S0016-7037(99)00427-5

The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA22 to goethite and
a subsurface sediment

JOHN M. ZACHARA,* STEVEN C. SMITH, and JAMES K. FREDRICKSON
1Pacific Northwest National Laboratory, Richland, Washington 99352 USA

(Received May4, 1999;accepted in revised form December1, 1999)

Abstract—Laboratory experiments were conducted with suspensions of goethite (a-FeOOH) and a subsur-
face sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA22, a representative
metal-ligand complex of intermediate stability (log KCo(II)EDTA 5 17.97). The goethite was synthetic (ca. 55
m2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain
(Milford). Shewanella algastrain BrY, a dissimilatory iron reducing bacterium (DIRB), was used to promote
Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co21, Fe21,
Co(II)EDTA22, and Fe(II)EDTA22 on the two sorbents in 0.001 mol/L Ca(ClO4)2 to aid in experiment
interpretation. Anoxic suspensions of the sorbents in PIPES buffer at pH 6.5–7.0 were spiked with
Co(II)EDTA22 (1025 mol/L, 60Co and14EDTA labeled), inoculated with BrY (1–63 108 organisms/mL),
and the headspace filled with a N2/H2 gas mix. The experiments were conducted under non-growth conditions.
The medium did not contain PO4

32 (with one exception), trace elements, or vitamins. The tubes were incubated
under anoxic conditions at 25°C for time periods in excess of 100 d. Replicate tubes were sacrificed and
analyzed at desired time periods for pH, Fe(II)TOT, Fe(aq)

21 , 60Co, and14EDTA. Abiotic analogue experiments
were conducted where Fe(aq)

21 was added in increasing concentration to Co(II)EDTA22/mineral suspensions to
simulate the influence of bacterial Fe(II) evolution. The DIRB generated Fe(II) from both goethite and the
Milford sediment that was strongly sorbed by mineral surfaces. Aqueous Fe21 increased during the experi-
ment as surfaces became saturated; Fe(aq)

21 induced the dissociation of Co(II)EDTA22 into a mixture of Co21,
Co(II)EDTA22, and Fe(II)EDTA22 (log KFe(II)EDTA 5 15.98). The extent of dissociation of Co(II)EDTA22

was greater in the subsurface sediment because it sorbed Fe(II) less strongly than did goethite. The post
dissociation sorption behavior of Co21 was dependent on pH and the intrinsic sorptivity of the solid phases.
Dissociation generally lead to an increase in the sorption (e.g., Kd) of Co21 relative to EDTA42 (form
unspecified). Sorbed biogenic Fe(II) competed with free Co(aq)

21 and reduced its sorption relative to unreduced
material. It is concluded that cationic radionuclides such as60Co or 239/240Pu, which may be mobilized from
disposed wastes by complexation with EDTA42, may become immobilized in groundwater zones where
dissimilatory bacterial iron reduction is operative.Copyright © 2000 Elsevier Science Ltd

1. INTRODUCTION

Organic ligand complexation can modify the aqueous geo-
chemical behavior of metal ions by either increasing or de-
creasing the tendency of the metal ion to associate with particle
surfaces. Complexing ligands such as ethylenediaminetetraace-
tic acid (EDTA42) decrease metal ion sorption in circumneutral
waters by suppressing surface coordination reactions of the
metal ion with hydroxylated surface sites on reactive Fe and Al
oxides (Bowers and Huang, 1986; Girvin et al., 1993; Girvin et
al., 1996). Such metal ion complexation has been cited as
causal for the far field groundwater migration of radioactive
cations (60Co and 239/240Pu) from subsurface disposal sites
(Means et al., 1978; Killey et al., 1984). In this communication
we investigate the geochemical behavior of a organic metal
complex [Co(II)EDTA22] selected to represent those of inter-
mediate to high stability (e.g., log KML . 15). EDTA42 is a
commonly used industrial complexant and food additive, is
relatively recalcitrant to microbial degradation, has been cited
as metal ion mobilizer in subsurface systems, and is an ubiq-

uitous minor component of many diverse waste streams includ-
ing low and high level nuclear waste. NiEDTA22 released from
wastewater treatment plants, for example, has been observed in
San Francisco Bay (Bedsworth and Sedlak, 1999).

Under oxidizing conditions where solid phase Fe(III)-oxides
are stable, Me(n)EDTA(42n)2 complexes undergo a complex
reaction suite. It includes:

1. Adsorption to hydroxylated surface sites on Fe and Al
oxides (e.g., SOH);

2. Dissociation promoted by soluble Fe31 and Al31 that com-
pete for EDTA42, and hydroxylated surface sites that com-
pete for the metal; and

3. For Co(II) specifically, oxidation to a weakly reactive,
highly stable form [Co(III)EDTA2; log K 5 41.2] (Zachara
et al., 1995a; Brooks and Jardine, 1996).

Rapid and slow reactions exist in the reaction suite (Szecsody
et al., 1998a,b), and these may impart strong kinetic behavior to
the phase distribution of the complex over time periods of
hours to days (Szecsody et al., 1994; Zachara et al., 1995a,b).
The concentrations of the ligands (EDTA42, SO2, SOH2

1)
relative to the metal (Co21), their stability constants (log K’s
for both aqueous and surface species), and the solubility of the
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Fe and Al containing phases are determining factors of the
extent of dissociation, adsorption, and retardation.

Far less is known about the geochemical behavior of organ-
ic-metal complexes in anoxic environments. Ferrogenic condi-
tions, the subject of this paper, are characterized by the absence
of bacterial sulfate reduction and the presence of significant
Fe(aq)

21 (Lyngkilde and Christensen, 1992a,b; Lovley and
Chapelle, 1995). Ferrogenic groundwaters are common
(Chapelle, 1993), and result primarily from the enzymatic
reduction of Fe(III) oxides coupled with organic matter or H2(g)

oxidation by dissimilatory iron reducing bacteria (DIRB; Lov-
ley et al., 1990; Lovley, 1993; Albrechtsen and Christensen,
1994). Significant changes occur to aquifer solids in transition
from oxic to ferrogenic conditions including a depletion of
poorly crystalline and crystalline Fe(III) oxides and an increase
in solid associated Fe(II) (Heron et al., 1994; Heron and Chris-
tensen, 1995). The presence of Fe(aq)

21 , the depletion of reactive
Fe(III) oxides and alteration of their surface properties, and the
potential saturation of surfaces by sorbed Fe(II) characterize
ferrogenic groundwaters/aquifer solids and are factors that may
have a profound, and as yet unexplored, influence on the
chemical behavior of Me(n)EDTA(42n)2 complexes.

Studies with microbial enrichment cultures have shown that
DIRB require direct contact with the Fe(III) oxide surface for
enzymatic reduction of the solid phase (Arnold et al., 1988;
Lovley et al., 1991; Myers and Nealson, 1988). Amorphic,
poorly crystalline, and crystalline Fe(III) oxides are all vulner-
able to DIRB reduction (Arnold et al., 1988; Phillips et al.,
1993; Roden and Zachara, 1996; Fredrickson et al., 1998;
Zachara et al., 1998). Surface chemistry appears to influence
the bioreduction of goethite and hematite, as the microbial
reduction rate slows as the surface reaches apparent saturation
with sorbed Fe21 (Roden and Zachara, 1996). Aqueous com-
plexants stimulate bacterial reduction of crystalline Fe(III) ox-
ides by drawing Fe(II) from the surface (Urrutia et al., 1998;
Urrutia et al., 1999). In subsurface materials, fine grained
amorphic and cryptocrystalline Fe(III) oxides may be prefer-
entially dissolved by DIRB, while the surfaces of more crys-
talline phases may be transformed to a Fe(II)-like phase.

We have previously investigated the influence of adsorption,
dissociation, and oxidation on the geochemical behavior of
Co(II)EDTA22 in oxidized subsurface sediments (Zachara et
al., 1995a,b). Here, we extend those findings to anoxic condi-
tions representative of Fe21 containing groundwaters. Ferro-
genic conditions were generated in anoxic suspensions of goe-
thite and a goethite-containing subsurface sediment through the
addition of Fe(aq)

21 , and biotically through inoculation with
DIRB (S. alga, strain BrY) and an electron donor (H2(g)).
Chemically unreactive electrolytes, buffer, and media were
chosen to minimize complexity. The biologic experiments were
conducted under non-growth conditions by withholding phos-
phate (except in one case), trace metals, and vitamins to avoid
complications resulting from abiotic reactions with nutrients
and cell division, etc. The geochemical behavior of Co(I-
I)EDTA22 was determined as a function of time and Fe21

concentration, emphasizing surface complexation and aqueous
dissociation reactions controlling chemical distribution be-
tween the aqueous and solid phase.

2. EXPERIMENTAL PROCEDURES

2.1. Stock Solutions and Sorbates

Stock solutions of 1022 mol/L Co21 and 1021 mol/L EDTA42 were
prepared using Co(ClO4)2 z 6H2O (Pfaltz and Bauer, Inc., Waterbury,
CT) and C10H14N2Na2O8 z 2H2O [EDTA, disodium salt, dihydrate (JT
Baker Chemical Co., Phillipsburg, NJ)] and deionized, distilled water
(DDW). The concentrations were verified by ICP analysis of Co and
Na, respectively. Dilutions were prepared to yield solutions of 1023

mol/L Co21, EDTA42 or Co(II)EDTA22. Radioactive cobalt (60Co as
CoCl2, 90.55 mCi/mg, 99% radiochemical purity, DuPont, Wilming-
ton, DE) and EDTA42 (14C as ethylenediaminetetraacetic acid [acetic-
1-14C], 4.5 mCi/mmol,.99% purity, ICN Biomedicals, Inc., Irvine,
CA) were added to yield 106 cpm/mL for radiochemical determination
of aqueous phase60Co and/or14C.

Stock solutions of 1022 mol/L Fe21 and 1021 mol/L EDTA42 were
prepared in an anoxic chamber using Fe(ClO4)2 z 6H2O (Johnson
Matthey Co. Inc., Ward Hill, MA) and C10H14N2Na2O8 z 2H2O
[EDTA, disodium salt, dihydrate (JT Baker Chemical Co., Phillipsburg
NJ)] and degassed, DDW. The solution pH was adjusted to 6.5 using
CO2-free NaOH and passed through a 0.2mm filter. The concentrations
were verified by ICP analysis of Fe and Na. Dilutions were prepared to
yield the desired concentrations of Fe21, EDTA42 or Fe(II)EDTA22.
Radioactive Fe21 (59Fe as FeSO4, 23.76 mCi/mg, 99% radiochemical
purity, DuPont, Wilmington, DE) and EDTA42 (14C as ethylenedia-
minetetraacetic acid [acetic-1-14C], 4.5 mCi/mmol,.99% purity, ICN
Biomedicals, Inc., Irvine, CA) were added to yield 106 cpm/mL.

2.2. Sorbents

Goethite was synthesized by combining 0.2 L of 1 mol/L Fe(NO3)3

with 1.8 L of 1 mol/L KOH (Schwertmann et al., 1985) in an acid-
washed 4 L HDPE Nalgenetbottle. The bottle was placed in a static
position in an oven at 75°C for 7 d.

The goethite was washed to remove residual NO3
2 and extracted five

times with acidified (0.25 mol/L HCl) hydroxylamine (NH2OH z HCl)
at 50°C to remove residual ferrihydrite. After extraction, the goethite
was washed 23with 0.03 mol/L Ca(ClO4)2 resuspended in DDW,
transferred to SpectraPort1000 MWCO tubing and dialyzed against
DDW until the conductivity of the outside solution was,5 mmho/cm.
The suspension was lyophilized, and lightly crushed to pass an 850-
mesh sieve. The resulting goethite had a surface area of 55.4 m2/g
measured by the N2 B.E.T. method.

A bulk sample of subsurface sediment was obtained in a sand pit at
a depth of 2 m from the Pleistocene-age, Columbia formation near
Milford, DE. The sand textured sediment was weakly cohesive with
grains cemented by Fe(III) oxides (primarily goethite). The sand min-
eralogy was dominated by quartz and weathered feldspars. The sedi-
ment was air dried and sieved to,2 mm. Selected characteristics of the
sediment are shown in Table 1. A more complete description of the
origin, sampling, and mineralogic analyses of this sediment were
presented in Zachara et al. (1995b; Zachara et al., 1998).

2.3. Abiotic Experiments

2.3.1. pH-dependent Fe(II) sorption

A known mass of Milford sediment was placed in 50 mL polycar-
bonate centrifuge tubes or Nalgene HDPE bottles and passed into an
anoxic chamber. The anoxic chamber used throughout this study was
equipped with an oxygen meter. Oxygen sensitive experiments were
performed when the O2 meter read 0.0 ppm O2. Dissolved O2 mea-
surements were not made. Degassed, electrolyte solution [0.003 mol/L
Ca(ClO4)2] was added to achieve the desired solid:soluton ratio. HClO4

or NaOH were added to duplicate tubes to achieve eleven target pH
values between 3.5 and 9.5. Following overnight equilibration, the
suspensions were re-adjusted to their target pH. This cycle was re-
peated until pH drift was,0.5 pH unit during the overnight equilibra-
tion. Vigorous, prolonged mixing of the suspensions was minimized.
Once pH equilibration was achieved, the suspensions were washed
twice with degassed, pH-adjusted 0.003 mol/L Ca(ClO4)2 to reduce the
concentration of dissolution products in solution. Following the last
wash, pH-adjusted electrolyte was quantitatively added to each tube to

1346 Zachara et al.



yield the desired solid:solution ratio. A variety of different solids
concentrations were used depending on the sorbate. These ranged
between 33 g/L and 500 g/L with specific values noted in the figures
and captions.

A stock suspension of goethite was prepared in an anoxic chamber
using degassed electrolyte solution [0.003 or 0.03 mol/L Ca(ClO4)2].
Aliquots of the suspension were transferred to tarred 50 mL Oakridge
tubes and the suspension mass determined. HClO4 and NaOH were
added to duplicate tubes to achieve target pH’s ranging from 2.0 to 9.5.
Typically 0.5 g/L goethite was used for the sorption experiments.
Changes from this concentration are noted when they occurred. The pH
adjustment process followed that described for the Milford sediment.

Ferrous iron was added to the pH adjusted suspensions as 1023

mol/L Fe21 or the preformed Fe(II)EDTA22 complex to yield a diluted
initial concentration of 1025 mol/L. The suspensions were equilibrated
by rotating at 80 rpm for 4 to 16 h in a light-excluded environmental
chamber (25°C). Phase separation was accomplished by centrifugation
at 5000 rcf for 30 min. Aqueous concentrations of14C and59Fe were
determined in the supernatant. Because dual-label counting techniques
could not be used for the simultaneous determination of14C and59Fe,
duplicate experiments were conducted with either14C-labelled
EDTA42 and stable Fe21, or non-labeled EDTA42 and59Fe21. A Ross
semimicro combination pH electrode was used to determine the pH of
the equilibrated solution.

Aqueous concentrations of Al, Fe, and Si in the Milford supernatants
and Fe in the goethite supernatants were determined using ICP-AES on
subsamples that had been passed through a 18 Å filter (Amicon Cen-
triflot membrane cones; Danver, MA). Prior to sample filtration, the
membrane cones were soaked in pH 2 DDW (pH adjusted with HNO3)
for 1 h and rinsed twice with centrifugation using DDW. The first 4 mL
of sample filtrate were discarded and the following 4 mL was combined
with 200 mL of concentrated UltrextHNO3 for sample preservation.

2.3.2. pH-Dependent adsorption of Co(II)EDTA22

The pH variable adsorption of Co(II)EDTA22 at 1025 mol/L was
measured identically to Fe(II)EDTA22 except that dual label counting
(60Co, 14C) was used to simultaneously quantify sorption of both
analytes.

2.3.3. Adsorption isotherms of Fe21 and Co21

Adsorption isotherms were measured on the Milford sediment and
goethite over a concentration range of 1027 to 1022 mol/L at pH values
relevant to the biotic reduction experiments. A 0.003 mol/L Ca(ClO4)2

background electrolyte was used that was buffered at pH 6.5 in some
cases with 0.01 mol/L PIPES [piperazine-N, N’-bis(2-ethanesulfonic
acid)]. Electrolyte and sorbate solutions were prepared in an anoxic
chamber using degassed, DDW. Ferrous iron solutions spiked with
59Fe21 were prepared as previously described. All stages of preparation
and sampling were conducted in an anoxic chamber. Sorbents were
degassed in the anoxic chamber for at least one week prior to contact
with Fe(aq)

21 . Various sorbent concentrations were used depending on the

sorbate and method of analysis. The synthetic goethite was used at
0.05, 0.1, 0.25, and 0.5 g/L and the Milford sediment at 10, 50, and 500
g/L. Only sealed reaction vessels were removed from the anoxic
chamber for determination of mass or during equilibration (under an N2

atmosphere). Suspensions were equilibrated at 25°C for 16 h on a
tabletop shaker (80 rpm), and were sampled and analyzed as described
for the pH edges.

2.3.4. Effect of Fe(aq)
21 on Co(II)EDTA22 sorption

To simulate the potential effects of bacterial Fe(III) oxide reduction
on Co(II)EDTA22 sorption, Fe(aq)

21 was metered [at concentrations of
1023, 1024, 1025, and 1026 mol/L Fe21] into Co(II)EDTA22 (1025

mol/L) suspensions with goethite and the Milford sediment at two
different initial pH values. The pH values and the sorbent concentra-
tions were selected so that approximately 75–80% of the Co(I-
I)EDTA22 would be adsorbed at the lower pH and,50% would be
adsorbed at the higher pH. All stages of preparation and sampling were
conducted in an anoxic chamber.

A sorbent concentration of 0.5 g/L for goethite and 500 g/L for the
Milford sediment was used which included either 0.003 mol/L Ca-
(ClO4)2 as the background electrolyte or 0.003 mol/L Ca(ClO4)2 and
0.01 mol/L PIPES as a pH buffer. The suspension pH values were
adjusted to values of approximately 5.5 and 7.0 for goethite and 6.0 and
7.5 for the Milford, both of which were re-adjusted for several days to
ensure initial pH stability. The electrolyte was replaced before sorbate
spiking first with Fe(aq)

21 and second [after 1 h equilibration with Fe21]
with Co(II)EDTA22. Suspensions were equilibrated for 16 h shaken at
80 rpm and 25°C before sampling and analyzing as previously de-
scribed. Aqueous Fe21 concentrations in the equilibrium solution were
determined by ICP-AES in 18 Å filtrates.

2.4. Microbiologic Experiments

2.4.1. Bacterial media, cultivation, and cell preparation

The dissimilatory iron reducing bacteria,S. alga, strain BrY (Cac-
cavo et al., 1992; Roselló-Mora et al., 1994; Roden and Zachara, 1996;
Urrutia et al., 1998), was used to promote Fe(III) oxide reduction.S.
algawas maintained on tryptic soy agar slants [30 g/L tryptic soy broth
(TSB), 15 g/L agar; Difco Laboratories, Detroit, MI] incubated aero-
bically at 30°C, and cultured for routine use in TSB medium on a rotary
shaker (200 rpm) at 37°C. The cell suspension was grown for 16 h to
late log phase. Two hours prior to inoculation of the mineral suspen-
sion, the bacterial culture was harvested by centrifugation at 6930 rcf
for 15 min at 10°C. The cell pellet was resuspended in sterile deionized
water and centrifuged again. Following the second centrifugation, the
cell pellet was resuspended in sterile DDW to yield the desired cell
concentration. The bacterial cell density was determined using the A600

of a 4-fold dilution.
To further prepare the cells for inoculation into mineral suspensions,

the culture was transferred to an N2-sparged, autoclaved serum bottle.
A sterile, 15 cm spinal tap needle (18 gauge) connected to a sterile,

Table 1. Selected properties of the Milford sediment.

N2-surface are
(m2/g)

Extractable Fe

NH2OH z HCla NH4Oxb DCBc

Silt and Clay
% Mineralogy(umol/g)

6.83 0.87 2.78 40.2 3.2 Quartz, K-feldspar,d trace
rutile, and magnetite;d

kaolinite and goethitee

a Acidified hydroxylamine hydrochloride.
b Ammonium oxalate in dark.
c Dithionite-citrate-bicarbonate.
d Sand sized fraction.
e Silt and clay.

1347Effect of biogenetic Fe(II) on Co(II) EDTA22



cotton-filled syringe through which N2 was flowing was inserted
through the stopper of the serum bottle until the tip was submerged in
the cell culture medium. The spinal needle and serum stopper was
swabbed with ethanol as the needle was pushed into the bottle. Another
needle, connected to a sterile, cotton-filled syringe was then pushed
through the stopper to provide a gas outlet, and the medium in the bottle
was purged for about 20 min. Aliquots of 0.5 mL cell culture were
added to the sediment suspensions to initiate the experiments. Unless
specified otherwise, the initial cell density in the sediment suspensions
was about 108 cells/mL. All cell additions were performed with sterile
syringes and needles that had been flushed with sterile, O2-free N2.

2.4.2. Incubation of Co(II)EDTA22 with BrY and goethite

Two experiments were conducted with laboratory synthesized goe-
thite incubated anaerobically with BrY in 0.003 mol/L Ca(ClO4)2. The
experiments were performed in 30 mL Cortex® centrifuge tube with an
approximate 20 mL total suspension volume after inoculation and
spiking. The suspension pH was adjusted to 6.5 using NaOH. In the
first experiment, goethite was used at 1.5 g/L and BrY at a cell density
of 1 3 108 cells/mL. The second experiment used 1.0 g/L goethite and
a BrY density of about 63 108 cells/mL.

The glass reaction vessels with goethite suspension were closed with
septum caps fitted with an inverted #20 Bellco rubber septum. To
selected tubes, a 0.5 mL aliquot of BrY cell suspension and/or 0.1 mL
of equimolar Co(II)EDTA22 solution labeled with14C and60Co were
added. Experimental controls included treatments without the BrY
inoculum and/or treatments without radio-labeled Co(II)EDTA22. The
target Co(II)EDTA22 concentration was 1025 mol/L. After the addition
of bacteria and Co(II)EDTA22 to the suspensions, approximately 9 mL
of headspace atmosphere was aseptically removed and replaced with 10
mL of sterile, ultrapure H2. The headspace in the tubes was maintained
anaerobic throughout the experiment. Incubation occurred in the dark at
25°C with occasional shaking.

At the desired time intervals, tubes were centrifuged at 5000 rcf for
10 min and the supernatant was sampled for14C and60Co and other
analytes (e.g., Fe and Al after 18 Å filtration). The pH of the superna-
tant was measured using a combination pH electrode (Microelectrodes,
Inc.; Londonderry, NH) in O2-free atmosphere.

Inoculated and non-inoculated control suspensions were sampled for
HCl-extractable Fe(II) at each sampling point, a measure of total
biogenic Fe(II) (Fredrickson et al., 1998). The oxide/sediment suspen-
sion was combined with UltrextHCl to yield a 0.5 mol/L HCl
concentration, mixed and allowed to sit overnight (16 h). The suspen-
sion was re-mixed and filtered through a 0.22mm syringe filter. The
first 5 mL of filtrate were discarded. The Fe(II) concentration of the
filtrate was measured by adding an aliquot of the filtrate with ferrozine
in 50 mmol/L HEPES (N-2-hydroxytheylpiperazine-N-2-ethanesul-
fonic acid) buffer. TheA562 of the sample was determined and com-
pared to Fe(II) standards prepared from ferrous ammonia sulfate and
treated similarly.

2.4.3. Incubation of Co(II)EDTA22 with BrY and the Milford
sediment

Six g of Milford sediment were added to 30 mL Corext centrifuge
tubes with 13.9 mL of anaerobic solution containing 0.003 mol/L
Ca(ClO4)2. The pH of the sediment suspension was adjusted to 6.5. The
tubes were closed with septum caps fitted with an inverted #20 Bellco™

rubber septum. The suspensions were allowed to rest for 48 h to ensure
pH stability. The tubes were inoculated with BrY (63 108 cells/mL),
spiked with Co(II)EDTA22, incubated, and sampled/analyzed as de-
scribed for goethite in 2.4.2.

2.4.4. Incubation of Co(II)EDTA22 with BrY, malate, and the
Milford sediment

This experiment was performed like 2.4.3 with the exceptions that
pH was adjusted with NH4OH, and 0.03 mol/L sodium malate and 53
1025 mol/L KH2PO4 were added to the anaerobic media. In this case
only, an attempt was made to stimulate growth by addition of a
C-source (malate) and supplementary N and P.

2.4.5. pH-dependent sorption of Co(II)EDTA22 on
microbially-reduced Milford sediment

Suspensions containing 6 g of Milford sediment and 12 mL of 0.003
mol/L Ca(ClO4)2 were prepared, and their pH was adjusted to;6.5.
BrY cells were inoculated to yield 13 108 cells/mL, H2(g) was added
as electron donor, and the tubes equilibrated as described previously.
The HCl-extractable Fe(II) of the suspension was monitored with time
to establish the extent of Fe(III) reduction. At 14 d after inoculation
with BrY, it was determined that the extent of Fe(III) reduction was
maximized at approximately 12% of the total goethite Fe(III). An
identical series of tubes containing Milford sediment and solution were
mixed and equilibrated withoutS. alga. This treatment allowed com-
parison of the sorption characteristics of the reduced to the unreduced
material.

On day 14, the suspensions were washed with 0.3 mol/L Ca(ClO4)2

to remove loosely attached bacterial cells and aqueous/exchangeable
Fe21. The washing procedure involved centrifugation; removal of
supernatant solution under anaerobic conditions; replacement of the
supernatant with fresh, anoxic electrolyte; resuspension of the sedi-
ment; and sonication for 5 min. The washing step was performed 3
times. After the final wash, the electrolyte was replaced and pH-
adjustment of the suspensions was initiated. The suspension pH was
adjusted to a range of values (between pH5 3.5 and 9.5) daily using
eitherNaOH or HClO4. After five days, the desired pHs were approxi-
mately achieved. Radio-labeled, equimolar Co(II)EDTA22 was added
to yield 1025 mol/L. After a 16 h equilibration with gentle mixing in
the dark, the suspensions were centrifuged at 650 rcf for 1 h. The
supernatant was sampled for14C and60Co and pH as described previ-
ously.

3. RESULTS

3.1. Identification of Chemical Components and Species

S. alga, strain BrY, produces Fe(II) in anoxic suspensions of
goethite and the Milford sediment in the presence of an appro-
priate e-donor (Roden and Zachara, 1996; Urrutia et al., 1998).
As Fe(aq)

21 is evolved, the speciation of Co(II)EDTA(aq)
22 may

change. Shown in Table 2 are the computed effects of Fe(aq)
21 on

the species distribution of Co(II)EDTA(aq)
22 (1.03 1025 mol/L)

at pH 6.75 using the aqueous complexation constants in Table
3. The range in [Fe21]T represents that observed by Roden and
Zachara (1996). Increasing concentrations of Fe(aq)

21 induce
Co(II)EDTA(aq)

22 dissociation at equilibrium, yielding a mixture
of Co(II)EDTA(aq)

22 , Co(aq)
21 , Fe(aq)

21 , and Fe(II)EDTA(aq)
22 . The

dissociation of Co(II)EDTA(aq)
22 is not complete in spite of the

molar excess of Fe(aq)
21 at its higher concentrations (1024–1023

mol/L) because of the higher stability constant of Co(II)
EDTA(aq)

22 (Table 3).
The dissociative effects of Fe(aq)

21 are shown for example only
in Table 2, as the actual effects will be influenced by adsorp-
tion. Sorption of Co21 to goethite enhances the extent of
Co(II)EDTA(aq)

22 dissociation, as surface SOH sites strongly
compete with EDTA42 for the metal. Ferrous iron sorption
decreases Co(II)EDTA(aq)

22 dissociation by reducing Fe(aq)
21 con-

centrations.

3.2. Sorption of Individual Chemical Components
and Species

Much of the experimental sorption data are presented as a
concentration based distribution coefficient, Kd [Kd(L/g) 5
total sorbed concentration (mol/g)/total aqueous concentration
(mol/L)] to allow comparisons between experiments with dif-
ferent sorbent concentrations. The Kd is influenced by both

1348 Zachara et al.



aqueous and surface speciation; i.e., Kd 5 S [surface species]/
[aqueous species]. Weakly sorbing aqueous species decrease
Kd, while strongly sorbing species increase Kd.

3.2.1. Goethite

The Kd for Co(aq)
21 and Fe(aq)

21 sorption to goethite increased
with increasing pH (Fig. 1a) as a result of coordination to
surface ligands (SOH) in competition with the proton (Davis
and Kent, 1990; Hayes and Katz, 1996).

Me(aq)
21 1SOH5 SOMe1 1 H1 (1)

The Fe(aq)
21 ion was sorbed more strongly than Co(aq)

21 , with its
sorption edge occurring 1 unit lower in pH (Fig. 1a). Both

metal ions, however, exhibited strong sorption and high Kd’s
over the pH range of the biotic experiments (pH5 6–8).

Ferrous iron was more strongly adsorbed than Co(aq)
21 on

goethite over a wide concentration range (Fig. 1b). Parallel,
slightly curvilinear isotherms were observed for Co(aq)

21 at pH
6.6 and pH 7.3, with higher sorption noted at higher pH as
expected from Figure 1a. The isotherm of Fe(aq)

21 was quite
variable and difficult to reproduce in spite of our precautions to
eliminate O2 from the experiment. The best (most consistent) of
these isotherms (Fig. 1b) exhibited two part behavior (L-curve;
Sposito, 1984) with steep slope at low surface concentration
(log[Me21]ads, 24.3), and flat slope at high surface concen-
tration indicating approach to surface saturation. The saturation
values for Fe(aq)

21 estimated according to the Langmuir conven-
tion (e.g., Kd versus the adsorbed concentration in mol/g2;
Sposito, 1984) increased with increasing pH and yielded an
average value of 1023.75mol/g (3.233 1026 mol/m2) at the pH
of the biotic reduction experiments. The surface saturation
value (3.233 1026 mol/m2) is approximately equal to the total
surface site density of goethite reported by Evanko and Dzom-
bak, (1998) and the concentration value suggested by Davis and
Kent (1990) for surface complexation modeling on mineral
surfaces (3.843 1026 mol/m2). Lower surface saturation val-
ues for Co(aq)

21 were estimated from the Co(aq)
21 isotherms

(0.8753 1026 mol/m2).
Co(II)EDTA(aq)

22 sorbed as an anion, with Kd’s (Co(II),
EDTA42) increasing with decreasing pH (Fig. 1c). Various
chemical reactions are summarized below and in the following
sections for interpretation of results. The reactions are intended
to illustrate mass action and material balance relationships
rather than to infer mechanism. Reaction sequences for the
Me(n)EDTA(42n)2 series have been derived from the works of
Girvin et al., (1993); Zachara et al., (1995b); Nowack et al.,
(1996a,b).

Co(II)EDTA(aq)
22 forms a relatively weak surface complex on

Fe(III) and Al(III) oxides that has been approximated for mod-
eling purposes as both outer sphere and inner sphere (Zachara
et al., 1995b; Nowack et al., 1996b).

Co(II)EDTA(aq)
22 1 SOH1 H1 5 SOH2

1-Co(II)EDTA22

(2)

The strength of Co(II)EDTA22 sorption at its maximum (log
Kd 5 1.25), was well below that noted for the metal cations
(log Kd 5 2.5, Fig 1a). Below pH5 5.5, increasing concen-

Table 2. Computed dissociation of 1025 mol/L Co(II)EDTA(aq)
22 in response to variable [Fe21]TOT concentrations.

[Fe(II)]TOT
a

Co(II)EDTA22

(mol/L)

%
(of [Co]TOT

& [EDTA] TOT)a
Co21

(mol/L)
%

(of [Co]TOT)1
Fe21

(mol/L)
%

(of [Fe]TOT)1
Fe(II)EDTA22

(mol/L)
%

(of [EDTA]TOT)a
%

(of [Fe]TOT)a

1.03 1026 9.623 1026 96.2 3.783 1027 3.80 7.923 1027 79.2 1.383 1027 1.38 20.6
5.03 1026 9.303 1026 93.0 6.933 1027 6.92 4.393 1026 87.8 6.023 1027 6.02 12.1
1.03 1025 9.053 1026 90.5 9.503 1027 9.54 9.103 1026 91.0 8.863 1027 8.86 8.90
5.03 1025 7.993 1026 80.0 1.993 1026 20.0 4.793 1025 95.9 1.963 1026 19.6 3.90
1.03 1024 7.293 1026 72.9 2.703 1026 27.0 9.713 1025 97.2 2.683 1026 26.8 2.70
5.03 1024 4.973 1026 49.7 5.023 1026 50.2 4.943 1024 98.9 5.003 1026 50.0 1.00
1.03 1023 3.793 1026 37.9 6.213 1026 62.1 9.953 1024 99.5 6.193 1026 61.9 0.50

a TOT 5 total component concentration.

Table 3. Aqueous complexation reactions.a

Reaction
log K

(I 5 0, 25°C)

EDTA42 1 H1 5 HEDTA32 11.03
EDTA42 1 2H1 5 H2EDTA22 17.78
EDTA42 1 3H1 5 H3EDTA2 20.89
EDTA42 1 4H1 5 H4EDTA 23.10
EDTA42 1 Ca21 5 CaEDTA22 12.32
EDTA42 1 Ca21 1 H1 5 CaHEDTA12 15.93
EDTA42 1 Co21 5 CoEDTA22 17.97
EDTA42 1 Co21 1 H1 5 CoHEDTA2 21.40
Co21 1 H2O 5 CoOH1 1 H1 29.67
Co21 1 2H2O 5 Co(OH)2 1 2H1 218.76
Co21 1 3H2O 5 Co(OH)3

2 1 3H1 232.23
EDTA42 1 Al31 5 AlEDTA2 19.07
EDTA42 1 Al31 1 H1 5 AlHEDTA 21.78
EDTA42 1 Al31 1 H2O 5 AlOHEDTA22 1 H1 12.81
EDTA42 1 Al31 1 2H2O 5 Al(OH)2EDTA32 1 2H1 2.20
Al31 1 H2O 5 AlOH21 1 H1 24.99
Al31 1 2H2O 5 Al(OH)2

1 1 2H1 210.10
Al31 1 3H2O 5 Al(OH)3 1 3H1 216.00
Al31 1 4H2O 5 Al(OH)4

2 1 4H1 223.00
EDTA42 1 Fe21 5 FeEDTA22 15.98
EDTA42 1 Fe21 1 H1 5 FeHEDTA2 19.11
EDTA42 1 Fe21 1 H2O 5 FeOHEDTA32 1 H1 6.27
Fe21 1 H2O 5 FeOH1 1 H1 29.50
Fe21 1 3H2O 5 Fe(OH)3

2 1 3H1 231.00
Mal22 1 H1 5 HMal2 5.10
Mal22 1 2H1 5 H2 Mal 8.56
Mal22 1 Ca21 5 CaMal 2.66
Mal22 1 Co21 5 CoMal 3.74
Mal22 1 Fe21 5 FeMal 3.48

a Smith and Martell (1977)
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trations of Fe(aq)
31 solubilized from the oxide caused disparate

sorption behavior of EDTA42 and Co(II) that were initially
co-associated in the complex. The Fe(aq)

31 promoted partial dis-
sociation of Co(II)EDTA(aq)

22 (log KFe(III)EDTA 5 27.91) to a
mixture of Fe(III)EDTA(aq)

2 , Co(II)EDTA(aq)
22 , and Co(aq)

21 :

Fe(aq)
31 1 Co(II)EDTA(aq)

22 5 Fe(III)EDTA(aq)
2 1 Co(aq)

21 (3)

The Kd-Co(II) for Co(II)EDTA22 decreased below pH 6
because of the increasing fraction of Co(aq)

21 (i.e., Kd 5
[Co(II)] (sorbed)/{[Co(II)EDTA (aq)

22 1 Co(aq)
21 ]}), which exhibited

low sorptivity at these pH’s (Fig. 1a).
Fe(II)EDTA(aq)

22 exhibited sorption behavior similar, in part,
to that observed for Co(II)EDTA(aq)

22 (Fig. 1d), with differences
resulting from the stronger affinity of the goethite surface for
Fe(aq)

21 (Fig. 1a) and the smaller aqueous complexation con-
stant (log KFe(II)EDTA 5 15.98). The competition of Fe(aq)

31

for EDTA42 below pH 6 and SO2 for Fe(aq)
21 above pH5 6.5

induced more complex dissociation than noted for
Co(II)EDTA(aq)

22 . The reaction suite is approximated as:

Fe(aq)
31 1 Fe(II)EDTA(aq)

22 5 Fe(III)EDTA(aq)
2

1 Fe(aq)
21 (below pH 5.0)(4) (4)

Fe(II)EDTA(aq)
22 1 SOH1 H1 5 SOH2

1-Fe(II)EDTA22 (5)

Fe(II)EDTA(aq)
22 1 Ca(aq)

21 1 SOH5 SOFe1

1 Ca(II)EDTA(aq)
22 1 H1 (above pH 6.5) (6)

The Kd for Fe(II) in the complex reflected aqueous speciation
effects (Kd 5 [Fe(II)](sorbed)/ {[Fe(II)EDTA (aq)

22 1 Fe(aq)
21 ]}) and

an apparent large difference in the affinity of the surface for
Fe(II)EDTA(aq)

22 versus Fe(aq)
21 . There was approximate parity in

the Kd’s of Co(II) and Fe(II) in the EDTA42 complex at pH 6
(log Kd 5 0.6) where Me(II)EDTA22 was believed to be the
primary surface species. Thus, surface complexes of
Fe(II)EDTA22 and Co(II)EDTA22 appear to exhibit compara-
ble surface binding strength.

3.2.2. Milford sediment

The chemical behavior of the four target solutes in contact
with the Milford sediment showed comparable behavior with
respect to pH as they did on goethite (Figs. 2a,c,d), attesting to
the presence of similar sorption reactions. There were differ-

Fig. 1. Sorption behavior of Co(aq)
21 , Fe(aq)

21 , Co(II)EDTA(aq)
22 , and Fe(II)EDTA(aq)

22 on goethite. Electrolyte was 0.003 mol/L
Ca(ClO4)2 and goethite was 0.5 g/L unless noted otherwise. a.) pH sorption edges (as Kd) of Co(aq)

21 and Fe(aq)
21 on goethite.

b.) adsorption isotherms of Co(aq)
21 and Fe(aq)

21 on goethite at different pH and solids concentrations. c.) pH sorption edge (as
Kd) of Co(II)EDTA22 on goethite; final Co(II)(aq) and EDTA(aq)

42 quantified simultaneously by dual label counting. d.) pH
sorption edge (as Kd) of Fe(II)EDTA(aq)

22 on goethite; results of two experiments where final Fe(II)(aq) and EDTA(aq)
42 were

quantified independently.
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ences, however; the Kd’s for the metal cations were approxi-
mately one log unit lower while those for the anions were in
excess of two log units lower than on goethite. These differ-
ences were due to the smaller surface area of the Milford
sediment, the lower exposed surface area of sorbent {[Fe(III)
and Al(III) oxide]} in the sediment, and the lower intrinsic
sorptivity of the natural oxide phases as compared to goe-
thite (Zachara et al., 1995b). The dissociation front of
Fe(II)EDTA(aq)

22 moved approximately 1.5 units to higher pH
(Fig. 2d) as compared to goethite (Fig. 1d) because of the
lower affinity of the Milford sediment for Fe(aq)

21 (Fig. 2a).
Sorption isotherms of the metal cations on the Milford sed-

iment were analogous, in part, to goethite, with Fe(aq)
21 being

more strongly sorbed than Co(aq)
21 (Fig. 2b). As on goethite,

Co(aq)
21 sorption was curvilinear, while Fe(aq)

21 displayed two-part
isotherm behavior. Sorption affinity for both cations was much
less on the Milford sediment; so much less, in fact that surface
sites were not saturated at log[Me21]aq 5 23 mol/L (Fig. 2b).
When plotted in Langmuir format (e.g., Kd versus mol/g), the
isotherms yielded estimated surface saturation values (Fe(aq)

21 5
7.203 1027 mol/m2; Co(aq)

21 5 3.533 1027 mol/m2 ) that were
below those of goethite (3.2.1).

3.3. Sorption Behavior During Bacterial Fe(III) Oxide
Reduction

Masses of goethite (1.0 g/L and 1.5 g/L) and the Milford
sediment (500 g/L) were used in the experiments with bacterial
inoculation that would yield approximately 75–90% adsorption
of Co(II)EDTA(aq)

22 at pH 6.75. It was presumed that sorption
would decrease through bacterial activity, in part because of
Fe(III) reduction and loss of Fe(III) oxide mass and surface
area. Large mass differences were used for the two sorbents
because of their difference in sorption affinity (Figs. 1 and 2).

3.3.1. Fe(II) generation

Biogenic Fe(II) was strongly sorbed by both goethite and the
Milford sediment in presence of Co(II)EDTA(aq)

22 (Fig. 3).Sorp-
tion, included Fe(II) adsorbed to the Fe(III) oxide, complexed
to cell materials, and bound to accessory sediment mineral
phases. Sorbed Fe(II) exceeded Fe(aq)

21 concentration by over an
order of magnitude. Fe(II) reached asymptotic values after
approximately 20 d for goethite and 75 d for the Milford. At the
asymptote, 2.24% of the goethite and 10.4% of the DCB
extractable Fe(III) in the Milford was reduced. We have ob-

Fig. 2. Sorption behavior of Co(aq)
21 , Fe(aq)

21 , Co(II)EDTA(aq)
22 , and Fe(II)EDTA(aq)

22 on Milford sediment. Electrolyte was
0.003 mol/L Ca(ClO4)2 and the Milford sediment was 500 g/L unless noted otherwise. a.) pH sorption edges (as Kd) of
Co(aq)

21 and Fe(aq)
21 on Milford sediment. b.) adsorption isotherms of Co(aq)

21 and Fe(aq)
21 on Milford sediment at different pH and

solids concentrations. c.) pH sorption edge (as Kd) of Co(II)EDTA22 on Milford sediment; final Co(II)(aq) and EDTA(aq)
42

quantified simultaneously by dual label counting. d.) pH sorption edge (as Kd) of Fe(II)EDTA(aq)
22 on Milford sediment;

results of two experiments where Fe(II)(aq) and EDTA(aq)
42 were quantified independently.
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served here, and with another Shewanella strain (S. putrefa-
ciens; Zachara et al., 1998), that many natural crystalline
Fe(III) oxides are more reducible than goethite. The total
amount of Fe(III) reduced in the Milford suspension (e.g.,
mol/L Fe(II) in HCl extract; Fig. 3) was larger than goethite
because of the greater bioavailability of the natural Fe(III)
oxide fraction and the higher mass concentration of reducible
Fe(III) oxide in the suspension [9.153 1022 mol/L Fe(III) in
the Milford as compared to 1.133 1022 to 1.73 1022 mol/L
Fe(III) in the goethite suspensions].

3.3.2. Co(II)EDTA22 distribution in goethite/BrY suspensions

The Fe(II) generated by BrY did not strongly effect the
sorption behavior of Co(II)EDTA(aq)

22 in goethite suspensions
(Fig. 4). While the two experiments with different goethite and
organism concentrations differed slightly in magnitude and

trend (i.e., Figs. 4a,b), the overall results were similar. That is,
the controls (without BrY) evolved to a point where Kd-
Co(II) 5 Kd-EDTA42 5 10. In the biotic experiments, the Kd’s
for both Co(II) and EDTA42 were lower than the controls.
Also, the Kd-Co(II) increased above the Kd-EDTA42 with
time, signifying partial dissociation of the complex according
to the following presumed relationship:

Fe(aq)
21 1 Co(II)EDTA(aq)

22 5 Fe(II)EDTA(aq)
22 1 Co(aq)

21 (7)

Differences between the controls and the biotic experiments
resulted from pH, which differed from target values (Table 4).
The pH of the control experiments was lower than targeted
(pH 5 5.2–6.0), and fell in a range where Co(II)EDTA(aq)

22

sorption was higher than in the biotic experiments, and where
partial dissociation by Fe(aq)

31 occurs (Reaction 3; Fig. 1c). This
lower pH promoted the partial dissociation of the complex in
the control experiments (0–50 d, Figs. 4a,b). In spite of the
presence of buffer, the pH of the biotic experiments increased
with time because of proton consumption during bioreduction:

Fig. 3. Concentration of aqueous and total (HCl-extracted) Fe(II) in
bioreduction experiments of goethite and the Milford sediment with
BrY and Co(II)EDTA22 (1025 mol/L). Solid concentrations as noted.
The HCl-extracted Fe(II) represents sorbed plus aqueous Fe(II).

Fig. 4. Solid-liquid distribution of 1025 mol/L Co(II)EDTA22 (as Kd) in goethite suspensions [a.) 1.0 g/L and b.) 1.5 g/L]
with e-donor (H2) and variable BrY inoculum in 0.003 mol/L Ca(ClO4)2. The distribution of Co(II)EDTA22 was determined
by dual-label counting of60Co and14EDTA. Note measured pH values in Table 4.

Table 4. Measured pH in sorption/reduction experiments with
goethite.

1.0 g/L goethite 1.5 g/L goethite

Time
(d)

Without
BrY

With
BrY

Time
(d)

Without
BrY

With
BrY

1 5.62 6.39 1 5.69 6.00
6.8 5.75 6.49 2 5.83 5.91

13.8 5.70 7.19 5 5.82 5.92
42.0 5.20 6.36 7.9 5.83 6.10
79.9 5.66 7.59 19.7 5.64 6.50

122 5.81 7.23 28.1 5.79 6.14
68.1 5.26 6.20

109 6.29 7.39
151 6.03 7.20
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FeOOH(s) 1 1/2H2(g) 1 2H(aq)
1 5 Fe(II) 1 2H2O (8)

Higher pH promoted greater initial stability of the complex,
weaker sorption of Co(II)EDTA(aq)

22 , and stronger sorption of
evolved Co(II).

The computed aqueous speciation in the biotic experiments
(at 75 d for 1.0 g/L and 109 d for 1.5 g/L, Table 5) indicated
that Fe(aq)

21 was high enough in concentration to induce some
dissociation of Co(II)EDTA(aq)

22 . The nominal concentration of
Fe(aq)

21 was slightly in excess of Co(II)EDTATOT
22 (1.6–1.93

1025 mol/L, Table 5), but was greater than 103higher than the
remaining aqueous concentrations of Co(II) (form unspecified),
Table 5. The calculations indicated that Co(II)EDTA(aq)

22 was
the predominant Co(II) aqueous species, but that Fe(II)ED-
TA(aq)

22 was the predominant EDTA42 species. The computed
effects of Fe(II) on Co(II)EDTA(aq)

22 were modest because most
of the evolved Fe(II) was sorbed to the goethite surface (Fig. 3).
The total extent of dissociation (i.e., of Co(II)EDTATOT

22 rather
than Co(II)EDTA(aq)

22 ) was not readily computed, however, as
most of the chemical mass of both Co(II)TOT and EDTATOT

42

(.75%) was surface associated. It is not known whether the
surface speciation of Co(II) and EDTA42 matched that in the
aqueous phase, but such parity is unlikely. More probable is
that the surface ratio of Co21:Co(II)EDTA22 exceeded that in

solution because: Co21 is strongly preferred by the surface at
this pH; and excess Fe(aq)

21 was present to promote the dissoci-
ation of Co(II)EDTA22.

3.3.3. Co(II)EDTA22 Distribution in Milford/BrY suspensions

3.3.3.1. Without Malate.The distribution of Co(II)EDTA(aq)
22

changed markedly in the Milford sediment after BrY inocula-
tion (Fig. 5a). The inoculated experiment differed from the
controls (without BrY) at,50 d, after which both systems
displayed analogous behavior. Because the Milford sediment
was not autoclaved (to prevent change in the Fe(III) oxide
fraction), we surmised that indigenous H2-utilizing Fe(III)-
reducers were present in the sediment that began reducing
Fe(III) after an approximate 50 d lag period.

The following comments pertain to the inoculated system;
they are, however, equally applicable to the uninoculated con-
trol after 50 d. Cobalt(II) and EDTA42 showed disparate sorp-
tion behavior indicating dissociation of Co(II)EDTA(aq)

22 (Fig.
5a). The increase in Kd-Co(II) (Fig. 5a) between 0 and 25 d
closely paralleled the evolution of Fe(II) (Fig. 3). The Kd

values for Co(II) (0.03, log Kd 5 21.52) and EDTA42 (0.002,
log Kd 5 22.69) after 50 d approached those for Co(aq)

21 (log
Kd 5 21.2, Fig. 2a) and Fe(II)EDTA(aq)

22 (log Kd 5 22.5, Fig.

Table 5. Computed aqueous speciation of Fe(II), Co(II), and EDTA42 in biotic experiment with goethite.

Sorbent
concentration/
time in days Fe(II)(aq)-ToT

a
Fe(aq)

21

(mol/L) Fe(II)EDTA(aq)
22 Co(II)(aq)-TOT

a
Co(aq)

21

(mol/L) Co(II)EDTA(aq)
22 EDTA(aq)-TOT

a Fe(II)EDTA(aq)
22 Co(II)EDTA(aq)

22

[C]/% [C]/% [C]/%

1.0 g/L/79.9d 1.883 1025 1.713 1025 1.483 1026 1.313 1026 1.393 1027 1.173 1026 2.723 1026 1.483 1026 8.123 1027

(91)b (7.8)b (10.6)b (89.3)b (54.2)b (43.0)b

1.5 g/L/109d 1.613 1025 1.483 1025 1.163 1026 9.203 1027 1.073 1027 8.123 1027 2.033 1026 1.163 1026 8.123 1027

(92.2)b (7.2)b (11.6)b (88.3)b (57)b (40)b

a TOT 5 total component concentration.
b ( ) 5 % of aqueous component.

Fig. 5. Solid-liquid distribution of 1025 mol/L Co(II)EDTA22 (as Kd) in Milford suspensions (500 g/L) with e-donor (H2)
and BrY inoculum. The distribution of Co(II)EDTA22 was determined by dual-label counting of60Co and14EDTA. a.)
without malate. b.) with 30 mM malate. Note measured pH values for the experiment without malate in Table 6.
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2d) measured as individual solutes at pH 6.5. The computed
speciation of the aqueous phase (Table 6) generally affirmed
that Co(II)EDTA(aq)

22 was being dissociated to yield Co(aq)
21 and

Fe(II)EDTA(aq)
22 . Toward the conclusion of the experiment,

89.6% of the total EDTA(aq)
42 was computed to exist as

Fe(II)EDTA(aq)
22 . The inequality of log Kd-Co(II) at the end of

this experiment (21.52) with that at comparable pH in the
sorption experiment (Fig. 2a,21.2) may be attributed to the
lingering, but small concentration of Co(II)EDTA(aq)

22 (Table 6),
or to a competitive effect of sorbed Fe(II) which was approx-
imately at surface saturation.

The effects of BrY on the distribution of Co(II)EDTA22

were greater for the Milford sediment than for goethite because
the resulting Fe(aq)

21 concentration was larger (Fig. 3) in the
sediment. The larger Fe(aq)

21 concentration resulted from two
factors:

1. Fe(III) oxides in the Milford sediment were more exten-
sively reduced than was goethite; and

2. The Milford sediment did not sorb Fe(II) as strongly as
goethite.

3.3.3.2. With Malate.The presence of 0.030 mol/L malate,
added as an assimilatable carbon source, suppressed the initial
sorption of Co(II)EDTA(aq)

22 (Fig. 5b). The supression was at-
tributed to an anion competition effect from malate, as the
sorption of Co(II)EDTA(aq)

22 is weak and decreases with increas-
ing electrolyte concentration (Girvin et al., 1993; Zachara et al.,
1995b; and unpublished data). The KH2PO4 (5 3 1025 mol/L)
present in the media of this one experiment may also have acted
to suppress Co(II)EDTA(aq)

22 sorption. Aqueous phase measure-
ments (not shown) indicated that most of the PO4 was sorbed.
EDTA42 sorption remained low throughout the experiment
implying that the sorption of Fe(II)EDTA22 was suppressed as
well.

The Kd-Co(II), however, increased with time (Fig. 5b) par-
alleling the reduction of Fe(III) and the release of Fe(aq)

21 (data
not shown). After approximately 20 d, Kd2Co(II) reached a
final value (0.03, log Kd 5 21.52) close to that in the exper-
iment without malate (Fig. 5a). The computed aqueous specia-
tion at that point (Table 7), indicated that close to 67.3% of the
total Co(II)EDTA22 concentration had been dissociated to
Co(II) and Fe(II)EDTA(aq)

22 . The sorption of free Co21 led to the
noted increase in Kd-Co(II). As in the preceding experiment,
the lack of parity in log Kd-Co(II) at 20 d (21.52) versus that

at pH 7 in Fig. 2a (20.5) may have resulted from the effects of
aqueous complexation (by both EDTA42 and malate) and/or
the competitive effects of sorbed Fe(II).

3.3.4. Co(II)EDTA22 sorption on the biotically reduced
Milford sediment

Approximately 10–20% of the DCB-extractable Fe(III)-ox-
ides in the Milford sediment were reduced during the biotic
experiments described above. This amount of reduction, how-
ever, had minimal impact on the sorptivity of Co(II)EDTA(aq)

22

to the sediment that had been washed with Ca(ClO4)2 to dis-
place sorbed Fe(II) (Fig. 6.). Fe(III) and Al(III) oxides are the
primary sorbents for Co(II)EDTA(aq)

22 in the Milford sediment
(Zachara et al., 1995b). The approximate parity in sorption of
the original and reduced material suggests that either the reac-
tive surface area of Fe(III) oxide fraction was conserved during
reduction or that a commensurate amount of Al(III) oxides
were exposed. Chemical extractions of soils and subsurface
sediments have shown that Fe(III) oxide removal need not lead
to a decrease in metal ion sorption if Al oxides are also present
(Zachara et al., 1992; Zachara et al., 1994).

3.4. Abiotic Simulation by Fe(aq)
21 Titration

Ferrous iron was metered into Co(II)EDTA22 suspensions
with goethite and the Milford sediment to abiotically simulate
the effect of Fe(II) evolution on Co(II)EDTA(aq)

22 stability and
sorption. Note that surface reactions of Fe(aq)

21 had a significant
impact on solution pH (Table 8 and 9) and these changes must
be considered along with the pH sorption trends in Figs. 1 and
2 (e.g., of Kd-Co(II) and Kd-EDTA42) to understand the results
that follow.

3.4.1. Goethite

The addition of increasing concentrations of Fe(aq)
21 to goe-

thite suspensions had differing impacts on the distribution of
Co(II)EDTA(aq)

22 depending on initial pH (Fig. 7).At lower pH
(5.5–4.3) where neither Fe(aq)

21 or Co(aq)
21 were strongly sorbed

(Fig. 1), increasing Fe(aq)
21 concentrations led to a systematic

decrease in Kd-Co(II) after a threshold value was achieved. The
behavior was consistent with Fe21saturation of the goethite
surface followed by the Fe(aq)

21 induced dissociation of
Co(II)EDTA22 (Reaction 7) to a mixture of Co21, Fe21,

Table 6. Computed distribution of aqueous species in the biotic experiment with the Milford sediment without malate.

Time
(d) pH

Co(II)aq2TOT
a Fe(II)aq2TOT

a EDTAaq2TOT
2

Co(aq)
21 Co(II)EDTA(aq)

21 Fe(aq)
21 Fe(II)EDTA(aq)

22 Co(II)EDTA(aq)
22 Fe(II)EDTA(aq)

22

(% of total) (% of total) (% of total)

1 5.85 25 74.6 97 2.9 53.3 45.6
2 5.99 37.8 62.0 98.3 1.6 43.1 56.3
5 6.25 45.0 54.9 98.7 1.2 28.7 70.8
8 6.43 43.3 56.6 98.6 1.3 23.6 76.0

14 6.54 47.7 52.3 98.8 1.1 16.1 83.6
28 6.55 44.7 55.3 98.7 1.2 12.0 87.6
64 6.58 30.3 69.6 97.6 2.3 10 89.6

a TOT 5 total component concentration.
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Co(II)EDTA22, and Fe(II)EDTA22. Aqueous speciation cal-
culations like those in Tables 3, 5, 6, and 7 demonstrated this
effect (not shown). The general constancy of Kd-EDTA42 as
the initial concentration of Fe(aq)

21 was increased reflected the
rather high and comparable sorptivity of both Co(II)EDTA(aq)

22

and Fe(II)EDTA(aq)
22 at these pH’s (Fig. 1).

At higher pH (6.83–5.85), Co(II)EDTA(aq)
22 was less strongly

sorbed, but Fe(aq)
22 was more strongly sorbed than at lower pH.

The slight tendency for both Kd-Co(II) and Kd-EDTA42 to
increase with increasing Fe(aq)

21 may result from enhanced sorp-
tion of the intact complex promoted by adsorbed positive
charge density (SO-Fe1, reaction 1). Surface saturation oc-
curred above an initial concentration of 1023.5 mol/L, allowing
Fe(aq)

21 to increase. This, inturn, promoted complex dissociation
and the decrease of Kd-Co(II) consistent with the sorption data
in Figure 1. The relationship between pH, final Fe(aq)

21 , and the
apparent dissociation of Co(II)EDTA22 is summarized for the
two experiments with different pH values in Table 8. Dissoci-
ation extent correlated with the appearance and concentration
of Fe(aq)

21 .

3.4.2. Milford sediment

The sorption behavior of Co(II)EDTA22 in the Milford
suspension with Fe(aq)

21 titration (Fig. 8)was, in part, analogous

Fig. 6. Percent sorption of 1025 mol/L Co(II)EDTA22 on the natural
and bioreduced Milford sediment. The distribution of Co(II)EDTA22

was determined by dual-label counting of60Co and 14EDTA. The
bioreduced sediment was washed free of sorbed Fe(II) with Ca(ClO4)2.

Table 8. Ferrous iron concentrations in Fe(aq)
21 metering experiment

with goethite.

Initial Fe(aq)
21

(mol/L)
Final Fe(aq)

21

(mol/L) Final pH Dissociationa

1026.0 DL 5.45 N
1025.5 DL 5.33 N
1025.0 DL 5.06 N
1024.5 1025.85 4.74 Y
1024.0 1024.20 4.55 Y
1023.5 1023.58 4.42 Y
1023.0 1023.06 4.31 Y
1026.0 DL 6.83 N
1025.5 DL 6.84 N
1025.0 DL 6.83 N
1024.5 DL 6.83 N
1024.0 DL 6.81 N
1023.5 1025.7 6.70 N
1023.0 1023.25 6.65 Y

DL 5 below the analytical detection limit 1026.25 mol/L.
a As implied by difference in Kd2Co(II) versus Kd2EDTA42.

Table 9. Ferrous iron concentrations in Fe(aq)
21 metering experiment

with Milford sediment.

Initial Fe(aq)
21

(mol/L)
Final Fe(aq)

21

(mol/L) Final pH Dissociationa

1026.0 DL 6.13 N
1025.5 DL 6.14 N
1025.0 DL 6.21 N
1024.5 DL 6.19 N
1024.0 DL 6.08 N
1023.5 1024.66 5.63 Y
1023.0 1023.54 5.42 Y
1026.0 DL 6.79 N
1025.5 DL 6.81 N
1025.0 DL 6.83 N
1024.5 DL 6.81 N
1024.0 DL 6.81 N
1023.5 1025.75 6.75 Y
1023.0 1024.30 6.53 Y

DL 5 below the analytical detection limit of 1026.25 mol/L.
a As implied by difference in Kd-Co(II) versus Kd-EDTA42.

Fig. 7. a.) Influence of Fe(aq)
21 addition on the distribution of Co(I-

I)EDTA22 in goethite suspensions at two different initial pH values.
Final pH values are noted in Table 8. b.) Kd’s for Co(II) and EDTA42

in Co(II)EDTA22 from Fig. 2 with the pH range for the experiments in
a.) noted.
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to that of goethite (Fig. 7). Differences were observed, how-
ever, that resulted from the solid-to-solution ratio (500 g/L) and
pH of the Milford suspensions that strongly affected the extent
of Fe(aq)

21 sorption and its final aqueous concentration. The
similarity in the Milford data between pH5 6.13 to 5.42 with
that of goethite between pH5 6.83 to 5.85 implied that the
same reaction suite was operative, including the apparent en-
hancement of Co(II)EDTA22 sorption by sorbed Fe(aq)

21 . As
noted for goethite, the observance of dissociation and its extent
correlated with the appearance and concentration of Fe(aq)

21

(Table 9).

4. DISCUSSION

4.1. The Sorbing Surface in Bioreduced Materials

Recently, we showed that siderite (FeCO3) and vivianite
[Fe3(PO4)2 z 8H2O] were biomineralization products resulting
from the reduction of crystalline Fe(III) oxides by DIRB
(Zachara et al., 1998). The formation of vivianite requires P
addition to the media (often in mM concentration) while si-
derite formation is promoted by bicarbonate typically included
to buffer pH in the medium. P was excluded from all experi-
ments herein except one (Fig. 5b) and HCO3 was not used as a
buffer. Therefore, significant carbonate or phosphate biomin-

eralization was not expected. X-ray diffraction analyses of this
same goethite and Milford sediment that were bioreduced by
Shewanella putrefaciensstrain CN-32 under culture conditions
identical to those used here showed no discernable biominer-
alization products. In PIPES buffer, the bioreduced goethite
appeared identical to the starting goethite (Fig. 9). When
present, biomineralization products are generally clearly visible
by SEM (Fredrickson et al., 1998; Zachara et al., 1999) and
were not observed here.

The asymptotic values of the sorbed Fe(II) concentrations
[Fe(II)-HCl] in both the bioreduced goethite (1023.6 mol/L)
and Milford (1022.15 mol/L) suspensions (Fig. 3) when nor-
malized to initial surface area (Fig. 10) were close to one
another and were within a factor of 1.5–2.75 times the Fe21

sorption capacities estimated from the isotherms (3.2). These
data support speculation that, under the specific media and
substrate conditions used here, that saturation of adsorbing
surfaces with Fe(II) has controlled and limited the bioreduction
of the Fe(III) oxides byS. alga. The apparent excess saturation
of the goethite and Milford surfaces may result from:

Fig. 8. a.) Influence of Fe(aq)
21 addition on the distribution of

Co(II)EDTA22 in Milford sediment suspensions at two different pH
values. The distribution of Co(II)EDTA22 was determined by dual-
label counting of60Co and14EDTA. b.) Kd’s for Co(II) and EDTA42

in Co(II)EDTA22 with the pH range for the experiments in a.) noted.

Fig. 9. Scanning electron micrograph of the goethite used in this
study after bioreduction byShewanella putrefaciens, strain CN-32 in
pipes buffer. 2 um scale bar as noted.

Fig. 10. The sorbed concentration of Fe(II) (inmmol/m2) in suspen-
sions of goethite and the Milford sediment with e-donor (H2) and BrY
inoculum. Data transformed from Fig. 3.
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1. pH differences between the isotherm and bioreduction ex-
periments;

2. Biosorption of Fe(II) to microorganism surfaces or cell
fragments (e.g., Urrutia et al., 1998);

3. An increase in effective surface area accompanying disso-
lution; or

4. Deep structural bioreduction.

Regardless of mechanism, the sorbing surface presented to
Co(II)EDTA22 in the intermediate to latter stages of the biore-
duction experiments appears to be saturated with Fe(II).

4.2. Impacts of Fe(III) Reduction on Co(II)EDTA22

Chemistry

The impacts of biologic reduction on the solid-liquid distri-
bution of Co(II)EDTA22 may be explained by separately con-
sidering the effects of aqueous and sorbed Fe(II).

4.2.1. Effects of Fe(aq)
21

The most important impact of DIRB-Fe(III) oxide reduction
on the sorption and stability Co(II)EDTA22 was through the
liberation of Fe(aq)

21 . Although Fe(II) was generated in mM
concentration, most of this remained in a sorbed state and had
little discernable impact on Co(II)EDTA22 speciation or sorp-
tion. Goethite, in particular, strongly held Fe(II); and for this
reason the impacts of bioreduction on Co(II)EDTA22 sorption
were minimal. However, increasing amounts of Fe(aq)

21 were
observed with time during bioreduction as the solids ap-
proached sorption saturation. The effect of Fe(aq)

21 was to induce
dissociation of Co(II)EDTA(aq)

22 via reactions 7 and 1.
Significant dissociation was only noted when Fe(aq)

21 .
Co(II)EDTA(aq)

22 because of the difference in the stability con-
stants of Co(II)EDTA(aq)

22 and Fe(II)EDTA(aq)
22 (Table 2). How-

ever, because the sorption of Co(II)EDTA22 and Co21 varied
with both pH and the sorbent (Figs. 1 and 2), a common
threshold Fe(aq)

21 concentration that induced dissociation was not
defined. This is shown in Figure 11 where the apparent disso-
ciation of Co(II)EDTA(aq)

22 was implied from the relationship of
Kd-Co(II) to Fe(aq)

21 . Dissociation commenced at approximately

1026 mol/L Fe(aq)
21 in goethite suspension and 1024 mol/L Fe(aq)

21

in Milford suspension (see asterisks in Fig. 11). The net effect
of dissociation was to change the Kd-Co(II), which either
increased or decreased depending on pH (Fig. 11) and the
sorbate preference of the sorbent. Generally, a linear or curvi-
linear (if pH varied) dependence of Kd-Co(II) on Fe(aq)

21 was
observed above the threshold Fe(aq)

21 concentration (Fig. 11). In
contrast, the Kd-EDTA22 was little changed by dissociation
because the sorptivity of Co(II)EDTA(aq)

22 and Fe(II)EDTA(aq)
22

were similar at intermediate pH.
Although this study was not designed to evaluate the kinetics

of Co(II)-Fe(II) exchange in the EDTA42 complex, the exper-
imental data suggests that the exchange rate was rapid, on the
scale of hours at least. Consistent with our data, Xue et al.
(1995) observed that the exchange rate of Fe(III)EDTA2 was
slow (t1⁄2 ' 20 d), but the rate for divalent metals (i.e., Ca21 and
Zn21) was far more rapid. They further speculated that the
exchange rate of Fe(II) in/with EDTA42 complexes under
anoxic conditions would also be rapid and comparable to other
divalent metals.

4.2.2. Effects of surface Fe(II)

There was surprisingly little discernable impact of sorbed
Fe(II) on the chemistry of Co(II)EDTA22. It was noted in
several instances that the measured Kd-Co(II) [for
Co(II)EDTA22] in biotic or abiotic systems where full disso-
ciation of Co(II)EDTA22 by Fe(aq)

21 was computed, were lower
by factors of 1.5 to 3 than Kd’s measured for Co21 at compa-
rable pH on non-reduced sediments. While it may be surmised
that bioreduction may have reduced the sorption of
Co(II)EDTA(aq)

22 by sorbent depletion or transformation, Figure
6 refutes that possibility. More likely is that Fe(aq)

21 and Co(aq)
21

compete for cation sorption sites on the oxide, and that the high
surface saturation of Fe(II) blocks and reduces Co(aq)

21 sorption.
A limited competitive isotherm was measured for Co(aq)

21 in
presence of sorbed Fe(aq)

21 on goethite (Fig. 12) to test this
hypothesis. Experimental procedures were used that were iden-
tical to those used for the isotherms in Figure 1, except that
Fe(aq)

21 was equilibrated with the goethite for 2 h prior to Co(aq)
21

addition. At equimolar concentration Fe(aq)
21 had no impact on

Fig. 11. Influence of Fe(aq)
21 on the Kd of Co(II) associated with

Co(II)EDTA22. Selected data from an abiotic experiment with goethite
(Fig. 7a) and a biotic experiment (Fig. 5a) with the Milford sediment.
For the abiotic experiment, the Fe(aq)

21 is the final concentration remain-
ing after spiking with a larger initial value. The noted responses for
both data sets are less than the anticipated 1:1 relationship.

Fig. 12. Competitive sorption isotherm of Co(aq)
21 and Fe(aq)

21 on
goethite at pH 6.5 in 0.003 mol/L Ca(ClO4)2. Conditions were as noted.
At the Fe(II): Co ratio of 206:1, only a single measurement was
obtained.
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Co(aq)
21 sorption implying independence in adsorption sites.

However, Fe(aq)
21 had a strong competitive effect on Co(aq)

21

sorption (one replicate measurement only) at a Fe:Co ratio
(206:1) and an initial Co(aq)

21 concentration (1025.2 mol/L) that
was similar to the biotic experiments (Fig. 12). Under these
specific conditions, Co(aq)

21 sorption was reduced by a factor of
nine, indicating that competitive interactions may have been
important in our experiments with high surface concentrations
of Fe(II). Our data was insufficient to establish whether the
apparent competitive effect resulted from mass action or sur-
face modification.

4.3. Biotic Effects

The abiotic Fe(aq)
21 titration experiments (Figs. 7, 8) were

performed to determine whether the microbial effects could be
attributed solely to Fe(II) generation. Indeed, there were dif-
ferences between the abiotic and biotic experiments, but gen-
eralizing the results was difficult because of experimental pH
variations and differences in sorption of the goethite and the
sediment. The addition of microorganisms to goethite/
Co(II)EDTA22 suspensions tended to reduce the overall sorp-
tion of both Co(II) and EDTA22 (Fig. 4), possibly because the
negatively charged cells adhered to sorbing particle surfaces.
Comparable effects were not evident for the Milford sediment
(Fig. 5). Another observed difference was that the Kd-Co(II) in
the abiotic experiment tended to decrease (relative to EDTA42)
after Fe(aq)

21 induced displacement from Co(II)EDTA22 (except
at high pH in Fig. 8a), while it increased in the biotic experi-
ment. We attribute these differences to variations in suspension
pH. In the abiotic experiments, a significant decrease was noted
in solution pH (Table 8 and 9) with increased sorption density
of Fe(II) and the appearance of Fe(aq)

21 . The proton evolution
was consistent with reaction (1). Thus, the build-up of Fe(aq)

21 ,
which destabilized Co(II)EDTA22, was associated with both a

decrease in solution pH and a decrease in sorption affinity of
the solid for Co21, consistent with the pH trend in Figure 1a. In
contrast, the bioreduction increased pH [reaction (8), Table 4],
which, in turn, lead to an increase in sorption affinity of Co21

[e.g., Kd-Co(II)].
It has been assumed, herein, that sorbed biogenic Fe(II) (e.g.,

Fig. 3) was chemically equivalent to sorbed Fe(II) resulting
from abiotic spiking with Fe(aq)

21 (e.g., Fig. 1 or Fig. 2). Clearly,
there is no basis to assume that a ferrous iron surface complex
is chemically equivalent to biotically generated lattice Fe(II).
Nonetheless, we assumed that the solid-liquid distribution of
biogenic Fe(II) would follow the abiotically determined Fe(aq)

21

sorption isotherm, and that the abiotic experiment was a rele-
vant chemical model of the biotic one. It was difficult in
practice to demonstrate this presumed chemical equivalence
because of the inability to distinguish Fe(II) species associated
with the solids; and lack of control on the bacterial reduction
reaction (e.g., Fe(II)TOT) and the final pH, in spite of the buffer.
For the limited cases where sufficient data was available for
comparison, the results were ambiguous (Fig. 13). The biotic
systems seemed to reach higher maximum sorption densities of
Fe(II) for both goethite and the Milford sediment. The pH issue
as noted in the preceding paragraph was crucial here as well.
The measured tendency for pH to decrease with increasing
sorption density in the abiotic experiment lead to a reduction in
isotherm slope with increasing [Fe21]TOT, while the increase in
pH that accompanied biotic Fe(II) generation lead to a sharply
contrasting effect when microorganisms were present (Fig.
13b, note the pH for the biotic experiment in Table 6).

Urrutia et al. (1998) found thatS. algaadsorbed significant
quantities of Fe(aq)

21 , implying that enhanced Fe(II) sorption
noted here in the biotic experiments could result from binding
to cells and cell fragments. Using their data, however, and the
organism concentrations in our experiments, we calculated that

Fig. 13. A comparison of the measured abiotic Fe(aq)
21 adsorption isotherms with the noted Fe(II) solid-liquid distribution

in the biotic reduction experiments with BrY. a.) goethite. b.) Milford sediment.
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the amount of Fe(II) sorbed to the organisms should be insig-
nificant compared to the mineral solids.

4.4. Differences Between Goethite and the Subsurface
Sediment

Significant differences were noted in the behavior of
Co(II)EDTA22 in the biotic experiments with goethite and the
Milford sediment (Figs. 4 and 5). In both experiments there was
a tendency for the Kd-Co(II) to increase, relative to EDTA42,
as bacterial reduction liberated Fe(II). However, the relative
extent of Kd increase was far greater in the Milford sediment.
This difference resulted from two related factors. First, the
Milford sediment was a less effective sorbent of Fe(II) in both
strength and capacity than was goethite. Consequently, Fe(aq)

21 in
the microbially-reduced Milford suspensions evolved to higher
concentrations (Fig. 3) which facilitated dissociation of
Co(II)EDTA22. Secondly, Me(n)EDTA(42n)2 complexes were
more weakly sorbed in the Milford sediment than on goethite
(Fig. 14). Organic coatings on the oxides or co- or surface-
precipitated silica may be responsible for the reduced sorptivity
of the anionic complexes (Zachara et al., 1995a,b). The differ-
ences between Kd-Co(II) and Kd-EDTA42 at maximum were
approximately 2 orders of magnitude on goethite, but were
close to four orders for the Milford sediment (Fig. 14). Thus,
the initial Co(II)EDTA22 complex was weakly sorbed by the
Milford sediment, and Co21 displaced from the complex by
biogenic Fe(aq)

21 experienced a greater relative enhancement in
sorption [e.g., Kd-Co(II)] than on goethite.

The goethite and Milford sediment were mineralogically
different. The Milford sediment contained fine-grained kaolin-
ite in mass concentration comparable to, or exceeding that of
goethite. We speculated that the speciation of biogenic Fe(II),
would be different from goethite in the Milford sediment, with
significant concentrations of Fe(II) adsorbed by kaolinite and
other accessory phases. We expected that these differences in

Fe(II) speciation would impact Co(II)EDTA22 behavior, but
did not observe such effects.

5. IMPLICATIONS TO SUBSURFACE ENVIRONMENTS

Weakly-sorbing metal-ligand complexes [e.g., Co(II)EDTA22]
of intermediate stability (e.g., log K. 15) may be destabilized
in ferrogenic groundwaters. Competition with Fe(aq)

21 displaces
the metal ion from the complex. The degree of displacement is
controlled by the concentration ratio of Fe(aq)

21 to the metal in the
complex [e.g., Co(II) in this case], their respective stability
constants for the ligand, and the adsorption strength of the
dissociation products for mineral surfaces. The displacement
reactions were rapid, occurring within the time frame of hours
to days. Sorbed Fe(II) did not appear to participate in the
dissociation reaction. Complicated geochemical behavior can
result for contaminant metals such as Co21 that are complex-
bound because of the multi-species distribution of products.
Different chemical species of the metal [e.g., Co(II)EDTA22

and Co21] may exhibit vastly different retardation behavior. In
ferrogenic groundwaters promoted by dissimilatory bacterial
iron reduction, the metal-ligand complexes may show progres-
sive down-gradient dissociation as a result of the changing
Me/Fe ratio promoted by chemical reaction and advection.

In the circumneutral pH range with Fe(III) and Al(III) oxide
containing sediments, small differences in pH may be impor-
tant in controlling whether the displaced metal (e.g., Co21) or
the ligand (as Fe(II)L22) is more mobile, because their adsorp-
tion edges tend to cross in that pH region. In the biotic exper-
iments performed here, the evolution of Fe(aq)

21 invariably led to
an increase in the Kd of the displaced metal relative to the
complexing ligand, which, in groundwater, would reduce the
mobility of the originally complexed metal. This resulted from
the net increase in system pH that accompanied bacterial
Fe(III) oxide reduction. Ferrogenic conditions would, for ex-
ample, lead to the immobilization of60Co or 239/240Pu, which

Fig. 14. A comparison of the sorption of Co(aq)
21 and Co(II)EDTA(aq)

22 (as log Kd) on goethite and Milford sediment. Data
for panel a.) was taken from Figures 1a,c. Data for panel b.) was taken from Figures 2a and 2c.
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are reportedly mobilized by complexation with EDTA42

(Means et al., 1978; Means and Alexander, 1981; Olsen et al.,
1986). The magnitude of adsorption of the displaced metal,
however, would be less than in comparable oxidized sediments
due to sorptive competition with surface and aqueous Fe21.
Sorbing mineral surfaces in circumneutral ferrogenic ground-
waters are likely to be near saturation with Fe(II), as shown
here and by Heron et al., (1994). Such saturation may or may
not influence the sorptive behavior of incoming contaminant
anions or cations. Surprisingly the bacterial reduction of a
sizable portion, i.e., 20%, of the Fe(III) oxide fraction of a
subsurface material need not influence the intrinsic sorptivity of
the sediment as shown for the sorption of Co(II)EDTA22 by
the bioreduced [washed free of sorbed Fe(II)] Milford sedi-
ment.
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Rosselló-Mora R. A., Caccavo F. J., Osterlehner K., Springer N.,
Spring S., Schler D., Ludwig W., Amann R., Vanncanneyt M., and
Schleifer K. H. (1994) Isolation and taxonomic characterization of a
halotolerant, facultatively iron-reducing bacterium.System. Appl.
Microbiol. 17, 569–573.

Schwertmann U., Cambier P., and Murad E. (1985) Properties of
goethite of varying crystallinity.Clays Clay Miner.33, 369–378.

Sposito G. (1984) The Chemistry of Soils. Oxford University Press,
New York.

Szecsody J. E., Zachara J. M., and Bruckhart P. L. (1994) Adsorption-
dissolution reactions affecting the distribution and stability of
Co(II)EDTA in Fe oxide-coated sand.Environ. Sci. Technol.28,
1706–1716.

Szecsody J. E., Zachara J. M., Chilakapati A., Jardine P. M., and
Ferrency A. S. (1998a) Importance of flow and particle-scale heter-
ogeneity on CoII/III EDTA reactive transport.J. of Hydrol. 209,
112–136.

Szecsody J. E., Chilakapati A., Zachara J. M., and Garvin A. L. (1998b)
Influence of iron oxide inclusion shape on CoII/III EDTA reactive
transport through spatially heterogeneous sediment.Water Resour.
Res.34(10),2501–2514.

Urrutia M. M., Roden E. E., Fredrickson J. K., and Zachara J. M.
(1998) Microbial and surface chemistry controls on reduction of

1361Effect of biogenetic Fe(II) on Co(II) EDTA22



synthetic Fe(III)-oxide minerals by the dissimilatory iron-reducing
bacteriumShewanella alga. Geomicrobio.15, 269–291.

Urrutia M. M., Roden E. E., and Zachara J. M. (1999) Influence of
aqueous and solid-phase Fe(II) complexants on microbial reduction
of crystalline Fe(III) oxides.Environ. Sci. Technol.33, 4022–4028.

Xue H., Sigg L., and Kari F. G. (1995) Speciation of EDTA in natural
waters: Exchange kinetics of Fe-EDTA in river water.Environ. Sci.
Technol.29, 59–68.

Zachara J. M., Resch C. T., and Smith S. C. (1994) Influence of humic
substances on Co21 sorption by a subsurface mineral separate and its
mineralogic components.Geochim. Cosmochim. Acta58(2),553–566.

Zachara J. M., Smith S. C., Resch C. T., and Cowan C. E. (1992)
Cadmium sorption to soil separates containing layer silicates and
iron and aluminum oxides.Soil Sci. Soc. Am. J.56, 1074–1084.

Zachara J. M., Gassman P. L., Smith S. C., and Taylor D. (1995a)
Oxidation and adsorption of Co(II) EDTA22 complexes in a sub-
surface materials with iron and manganese oxides.Geochim. Cos-
mochim. Acta59(21),4449–4463.

Zachara J. M., Smith S. C., and Kuzel L. S. (1995b) Adsorption and
dissociation of Co-EDTA complexes in iron oxide-containing sub-
surface sands.Geochim. Cosmochim. Acta59, 4825–4844.

Zachara J. M., Fredrickson J. K., Li S.-M., Smith S. C., and Gassman
P. L. (1998) Bacterial reduction of crystalline Fe(III) oxides in single
phase suspensions and subsurface materials.Am. Mineral.83,1426–
1443.

Zachara J. M., Smith S. C., and Fredrickson, J. K. (1999) Reductive
solubilization of Co21 from FeCoOOH by a dissimilatory iron
reducing bacterium.Geochim. Cosmochim. Acta(Submitted).

1362 Zachara et al.


	The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA22 to goethite and a subsurface sediment
	

	PII: S0016-7037(99)00427-5

	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


