25 research outputs found

    Determinants of weight, psychological status, food contemplation and lifestyle changes in patients with obesity during the COVID-19 lockdown: a nationwide survey using multiple correspondence analysis

    Get PDF
    Introduction The corona virus disease 2019 (COVID-19) pandemic forced most of the Italian population into lockdown from 11 March to 18 May 2020. A nationwide survey of Italian Clinical Nutrition and Dietetic Services (Obesity Centers or OCs) was carried out to assess the impact of lockdown restrictions on the physical and mental wellbeing of patients with obesity (PWO) who had follow-up appointments postponed due to lockdown restrictions and to compare determinants of weight gain before and after the pandemic. Methods We designed a structured 77-item questionnaire covering employment status, diet, physical activity and psychological aspects, that was disseminated through follow-up calls and online between 2 May and 25 June 2020. Data were analyzed by multiple correspondence analysis (MCA) and multiple linear regression. Results A total of 1,232 PWO from 26 OCs completed the questionnaires (72% female, mean age 50.2 +/- 14.2 years; mean BMI 34.7 +/- 7.6 kg/m(2); 41% obesity class II to III). During the lockdown, 48.8% gained, 27.1% lost, while the remainder (24.1%) maintained their weight. The mean weight change was +2.3 +/- 4.8 kg (in weight gainers: +4.0 +/- 2.4 kg; +4.2% +/- 5.4%). Approximately 37% of participants experienced increased emotional difficulties, mostly fear and dissatisfaction. Sixty-one percent reduced their physical activity (PA) and 55% experienced a change in sleep quality/quantity. The lack of online contact (37.5%) with the OC during lockdown strongly correlated with weight gain (p < 0.001). Using MCA, two main clusters were identified: those with unchanged or even improved lifestyles during lockdown (Cluster 1) and those with worse lifestyles during the same time (Cluster 2). The latter includes unemployed people experiencing depression, boredom, dissatisfaction and increased food contemplation and weight gain. Within Cluster 2, homemakers reported gaining weight and experiencing anger due to home confinement. Conclusions Among Italian PWO, work status, emotional dysregulation, and lack of online communication with OCs were determinants of weight gain during the lockdown period

    Specific, Surface-Driven, and High-Affinity Interactions of Fluorescent Hyaluronan with PEGylated Nanomaterials

    No full text
    Hybrid nanomaterials are a subject of extensive research in nanomedicine, and their clinical application is reasonably envisaged in the near future. However, the fate of nanomaterials in biological environments poses serious limitations to their application; therefore, schemes to monitor them and gain control on their toxicity could be of great help for the development of the field. Here, we propose a probe for PEGylated nanosurfaces based on hyaluronic acid (HA) functionalized with rhodamine B (RB). We show that the high-affinity interaction of this fluorogenic hyaluronan (HA-RB) with nanoparticles exposing PEGylated surfaces results in their sensing, labeling for super-resolution imaging, and synergistic cellular internalization. HA-RB forms nanogels that interact with high affinity-down to the picomolar range-with silica nanoparticles, selectively when their surface is covered by a soft and amphiphilic layer. This surface-driven interaction triggers the enhancement of the luminescence intensity of the dyes, otherwise self-quenched in HA-RB nanogels. The sensitive labeling of specific nanosurfaces also allowed us to obtain their super-resolution imaging via binding-activated localization microscopy (BALM). Finally, we show how this high-affinity interaction activates a synergistic cellular uptake of silica nanoparticles and HA-RB nanogels, followed by a differential fate of the two partner nanomaterials inside cells

    A fluorescent sensor array based on heteroatomic macrocyclic fluorophores for the detection of polluting species in natural water samples

    No full text
    The development of a novel all-solid-state optical sensor array based on heteroatomic macrocyclic fluorophores (diaza-crown ether, metallocorrole and pyridinophans) for the photographic analysis of liquid media, is presented. The sensitivity of the new optical system toward a number of different species (cations: Li+, K+, Na+, NH4+, Mg2+, Ca2+, Co2+, Cu2+, Zn2+, Cd2+, Pb2+ and anions: NO2-, NO3-, Cl-, Br-, HCO3-) was evaluated both in single selective sensor mode and in multisensory arrangement. The satisfactory PLS1 regression models between sensor array optical response and analyte concentration were obtained for Cd2+, Cu2+, Zn2+, and NO2- ions in all the range of tested concentrations. Among these species the highest attention was focused onto detection of cadmium and nitrite ions, for which the detection limits, DL, estimated by 3s method were found 0.0013 mg/L and 0.21 mg/L respectively, and these values are lower than the corresponding WHO guideline values of 0.003 mg/L (Cd2+) and 2 mg/L (NO2-). The suitability of the developed sensors implemented with familiar devices for signal acquisition (Light Emitting Diode, LED, as light source and a digital camera as a signal detector), and chemometric methods for data treatment to perform fast and low-cost monitoring of species under interest, in real samples of environmental importance, is demonstrated. © 2018 Lvova, Caroleo, Garau, Lippolis, Giorgi, Fusi, Zaccheroni, Lombardo, Prodi, Di Natale and Paolesse

    Relationship between intrathyroid calcifications and thyroglobulin in endemic goiter

    No full text
    Intrathyroid calcifications represent a common finding within simple or nodular goiters, but, as far as they can be found also inside papillary and medullary thyroid carcinomas, an ultrasonographic detection of intrathyroid calcifications stands as a different diagnosis problem. We have been looking for the presence of parameters associated with thyroid calcifications in patients affected by simple or nodular goiter, either sporadic or endemic. We studied 284 euthyroid subjects, 250 females, ageing from 24 to 90 years, affected by a simple goiter, in the 9.51% of the cases, and by a nodular goiter in the remaining part. 69.37% of the patients came from an endemic goiter area, while the others were affected by sporadic goiter. We tested fT3, fT4, TSH, hTG, Ab-TG, Ab-TPO and performed an ultrasonography in all the subjects, 57.75% of patients shown intrathyroid calcifications in the 57.75% of them. We applied a multistep discriminant analysis taking for the presence/absence of calcifications as dependent variable and we tried to find which variable, by itself or in combination with others, could foretell its presence. We also created a new variable (TG1) to differentiate normal from supraphysiologic concentrations of hTG (< 60 ng/ml). The variable with the highest significance F originated from endemic goiter area (F = 96.36), followed by TG1 (F = 24.46) and age (F = 10.61). On the contrary hTG did not relate to calcifications, due to non-proportionally direct relationship between these two parameters, afterwards we used the multistep logistic regression that gave overlapping significances. This means that supraphysiologic hTG rates are sufficient to predict the possible presence of intrathyroid calcifications. In conclusion, as far as a follicular hyperstimulation can be assumed, especially if long-lasting, the presence of intrathyroid calcifications should rise a clinical suspect toward an old goiter rather than a neoplastic lesion

    AR copy number and AR signaling-directed therapies in castration-resistant prostate cancer

    No full text
    Background: Adaptive upregulation of Androgen Receptor (AR) is the most common event involved in the progression from hormone sensitive to Castration-Resistant Prostate Cancer (CRPC). AR signaling remains the main target of new AR signalling-directed therapies such as abiraterone and enzalutamide in CRPC patients. Objective: In this review, we discuss general mechanisms of resistance to AR-targeted therapies, with a focus on the role of AR Copy Number (CN). We reported methods and clinical applications of AR CN evaluation in tissue and liquid biopsy, thus to have a complete information regarding its role as predictive and prognostic biomarker. Conclusion: Outcomes of CRPC patients are reported to be highly variable as the consequence of tumor heterogeneity. AR CN could contribute to patient selection and tumor monitoring in CRPC treated with new anti-cancer treatment as abiraterone and enzalutamide. Further studies to investigate AR CN effect to these agents and its potential combination with other prognostic or predictive clinical factors are necessary in the context of harmonized clinical trial design

    PluS Nanoparticles as a tool to control the metal complex stoichiometry of a new thio-aza macrocyclic chemosensor for Ag(I) and Hg(II) in water

    No full text
    We report here the synthesis of a new thio-aza macrocyclic chemosensor based on the 2,5-diphenyl[1,3,4]oxadiazole in which two thioether groups were inserted in a macrocycle with the aim to make it suitable for the coordination of soft and heavy metal ions. In acetonitrile solution, the fluorescence of the chemosensor changes upon addition of different metal ions, such as Cu(II), Zn(II), Cd(II), Pb(II), Hg(II) and Ag(I), that form a not fluorescent ML species and a fluorescent M2L species characterized also via NMR experiments. The hosting of the chemosensor inside the PluS Nanoparticles leads to a high water solubility, allowing to perform the metal detection without the use of additional solvents and also induced an higher selectivity towards Ag(I) and Hg(II). Moreover, it was demonstrated for the first time the possibility to control the stoichiometry of the formed complex upon changing the number of ligands per nanoparticles. To our opinion, this possibility can give an additional tool for the tuning of the affinity and selectivity of the chemosensor that could be of great interest for the design of more and more efficient systems

    A Simple Spectrofluorometric Assay to Measure Total Intracellular Magnesium by a Hydroxyquinoline Derivative

    No full text
    Abstract The intracellular behaviour of diaza-18-crown-6 appended with two H-substituted hydroxyquinoline groups (DCHQ1) was investigated to explore its application as a new sensor for the evaluation of cell magnesium content and distribution. We used five cells lines characterised by different contents of magnesium and different intracellular membrane-defined compartments. The main result is the definition of the appropriate experimental conditions to quantitatively assess the total cell magnesium by fluorescence spectroscopy. We showed that disrupting cells by sonication, DCHQ1 was capable to assess total cell magnesium in all cell types examined, obtaining overlapping results with atomic absorption spectroscopy (AAS). This new analytical approach requires very small cell samples and a simple fluorimetric technique, and can be a valid alternative to AAS. The fluorescent properties of DCHQ1 in living cells are: (a) it consistently stains live cells, (b) it discriminates small variations of cell Mg contents, (c) cell staining is stable for at least 30 min. We also investigated the role of lipophilic environment on DCHQ1 fluorescence by mimicking cell membranes and described how the composition and structure of lipid vesicles affect Mg-DCHQ1 fluorescence. Thus, DCHQ1 may offer important information also on magnesium distribution in living cells, providing a novel strategy to map the intracellular compartmentalization of this cation

    PluS Nanoparticles as a tool to control the metal complex stoichiometry of a new thio-aza macrocyclic chemosensor for Ag(I) and Hg(II) in water

    No full text
    We report here the synthesis of a new thio-aza macrocyclic chemosensor based on the 2,5diphenyl[1,3,4]oxadiazole in which two thioether groups were inserted in a macrocycle with the aim to make it suitable for the coordination of soft and heavy metal ions. In acetonitrile solution, the fluorescence of the chemosensor changes upon addition of different metal ions, such as Cu(II), Zn(II), Cd(II), Pb(II), Hg(II) and Ag(I), that form a not fluorescent ML species and a fluorescent M2L species characterized also via NMR experiments. The hosting of the chemosensor inside the PluS Nanoparticles leads to a high water solubility, allowing to perform the metal detection without the use of additional solvents and also induced an higher selectivity towards Ag(I) and Hg(II). Moreover, it was demonstrated for the first time the possibility to control the stoichiometry of the formed complex upon changing the number of ligands per nanoparticles. To our opinion, this possibility can give an additional tool for the tuning of the affinity and selectivity of the chemosensor that could be of great interest for the design of more and more efficient systems

    Diaza-18-crown-6 hydroxyquinoline derivatives as flexible tools for the assessment and imaging of total intracellular magnesium

    No full text
    Although magnesium is essential for a number of biological processes crucial for cell life, its distribution and intracellular compartmentalization have not been thoroughly elucidated yet, mainly because of the inadequacy of the available techniques to map intracellular magnesium distribution. For this reason, particular interest has been recently raised by a family of fluorescent molecules, diaza-18-crown-6 8-hydroxyquinolines (DCHQ1 and its derivatives), that show a remarkable affinity and specificity for magnesium, higher than all the commercially available probes, thus permitting the detection of the total intracellular magnesium. A recently optimized synthetic approach to DCHQ using microwave heating allowed us to easily generate a variety of substituted DCHQ derivatives with improved fluorescence, uptake and selective localization with respect to the original reference material (DCHQ1). The introduction of aromatic side groups enhanced the fluorescence response in cells and also improved intracellular uptake and retention of the probes even after washing. Enhanced uptake has also been achieved with an acetoxymethyl ester derivative that is recognized by the intracellular esterases. Finally, the insertion of two long hydrophobic side chains allowed a better staining of the membranes due to the high affinity to the lipophilic environment. These results show the potential of these new fluorescent probes as effective tools for shedding light on total intracellular magnesium distribution and homeostasis. © 2012 The Royal Society of Chemistry
    corecore