2,570 research outputs found

    Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities

    Get PDF
    We present a temperature dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO phonon assisted transition from crystalline silicon at ~1.10 eV we observe a broad defect band luminescence from ~1.05-1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air-holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room-temperature, in strong contrast the background emission vanishes for T > 150 K. An Ahrrenius type analysis of the temperature dependence of the luminescence signal recorded either in-resonance with the cavity mode, or weakly detuned, suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell-effect

    Potential drug-drug interactions in patients with indication for prophylactic implantation of a cardioverter defibrillator: a cross-sectional analysis

    Get PDF
    Background: Due to demographic transition, multimorbidity and high numbers of medicinal products, polypharmacy rates will presumably further increase. This could lead to higher risks of potentially inappropriate medications with potential drug-drug interactions (PDDI). PDDI has already been investigated by several studies, but not for patients with indication for prophylactic implantation of a cardioverter defibrillator (ICD). Thus, the objective of this analysis was to examine the frequency of PDDI in that specific group of patients and compare patients with or without PDDI regarding potential underlying factors. Methods: Cross-sectional data analyses were performed using data of the prospective EU-CERT-ICD study that primarily aimed to assess ICD effectiveness in Europe. Self-reported baseline medication data of patients from Germany and Switzerland were used. Patients who reported to take at least two drugs simultaneously for at least 80 days were defined as population at risk. By means of a publicly available interaction checker, we analyzed the medication data regarding occurrence and characteristics of PDDI categorized as minor, moderate, and major PDDI. The analyses were done using descriptive methods and chi square testing. Results: The total population (n = 524) and the population at risk (n = 383) were rather similar with an average age of 64 years and about 80% male. PDDIs were found for 296 patients (in 57% of total population vs. 77% of population at risk). The moderate PDDI category was most frequently with 268 affected patients. Comparing patients with and without any PDDI, the proportion of patients with place of residence in Germany varied distinctly (93% vs. 78%). The frequency of any PDDI for the total population was twice as high in Germany as in Switzerland (p value < 0.001). Conclusions: PDDIs were frequently observed in this selected patient population and differed markedly between German and Swiss patients. The results should lead to higher awareness of polypharmacy and PDDIs. Adequate cooperation between health care providers should be promoted and new technologies such as drug interaction information systems or digital patient files used. Trial registration: The EU-CERT-ICD study is registered at www.clinicaltrials.gov (NCT02064192)

    Accurate strain measurements in highly strained Ge microbridges

    Full text link
    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.Comment: 10 pages, 4 figure

    Sediment accumulation and carbon burial in four hadal trench systems

    Get PDF
    Hadal trenches are considered to act as depocenters for organic material, although pathways for the material transport and deposition rates are poorly constrained. Here we assess focusing, deposition and accumulation of material and organic carbon in four hadal trench systems underlying different surface ocean productivities; the eutrophic Atacama and Kuril-Kamchatka trenches, the mesotrophic Kermadec trench and the oligotrophic Mariana Trench. The study is based on the distributions of naturally occurring 210Pbex, 137Cs and total organic carbon from recovered sediment cores and by applying previously quantified benthic mineralization rates. Periods of steady deposition and discreet mass-wasting deposits were identified from the profiles and the latter were associated with historic recorded seismic events in the respective regions. During periods without mass wasting, the estimated focusing factors along trench axes were elevated, suggesting more or less continuous downslope focusing of material toward the interior of the trenches. The estimated organic carbon deposition rates during these periods exhibited extensive site-specific variability, but were generally similar to values encountered at much shallower settings such as continental slopes and margins. Organic carbon deposition rates during periods of steady deposition were not mirrored by surface ocean productivity, but appeared confounded by local bathymetry. The inclusion of deposition mediated by mass-wasting events enhanced the sediment and organic carbon accumulations for the past ∼ 150 years by up to a factor of ∼ 4. Thus, due to intensified downslope material focusing and infrequent mass-wasting events, hadal trenches are important sites for deposition and sequestration of organic carbon in the deep sea

    Spin polarization of oxygen atoms in ferromagnetic Co-doped rutile TiO 2

    Get PDF
    Of central interest in the research of dilute magnetic semiconductors is the coupling mechanism leading to a ferromagnetic ground state. Using x-ray resonant magnetic scattering, we have analyzed the element specific magnetic hysteresis curves of Co, Ti, and oxygen in Co-doped Ti O2 synthesized by ion implantation. Magnetic dichroism was observed at the Co L2,3 edges, as well as at the O K edge, indicative of a spin polarization of oxygen atoms in the Ti O2 host matrix. The hysteretic shapes and the coercive field values measured at the Co L3 and O K edges are identical (1.9 kOe at 30 K). © 2006 American Institute of Physics
    corecore