12 research outputs found

    Immunoinflammatory effects of dietary bioactive compounds

    No full text
    Inflammation is a key mechanism of the immune system that can be elicited by several factors, among them several chemical, physical and biological agents. Once stimulated, the inflammatory response activates a series of signaling pathways and a number of immune cells which promote, in a very coordinated manner, the neutralization of the infectious agent. However, if uncontrolled, the inflammatory status may become chronic leading, potentially, to tissue damage and disease onset. Several risk factors are associated with the development of chronic inflammation and, among these factors, diet plays an essential role. In this chapter the effects of some dietary bioactive compounds, including micronutrients, omega-3 fatty acids, nucleotides and polyphenols, on the immunoinflammatory responses in different cellular, animal and human studies have been summarized

    Changes in the Lifestyle of the Spanish University Population during Confinement for COVID-19

    No full text
    The aim of this study was to evaluate the influence of the lockdown due to the COVID-19 pandemic, on eating and physical activity behavior, in a university population. A healthy diet such as the Mediterranean Diet (MD) pattern, rich in fruit and vegetables, can prevent degenerative diseases such as obesity, diabetes, cardiovascular diseases, etc. We conducted a cross-sectional study and data were collected by an anonymous online questionnaire. Participants completed a survey consisting of 3 sections: sociodemographic data; dietary behavior and physical activity; the Mediterranean Diet questionnaire (MEDAS-14) and the Emotional Eater Questionnaire (EEQ). A total of 168 participants completed the questionnaire: 66.7% were women, 79.2% were from Spain, 76.8% were students, 76.2% lived in their family home and 66.1% were of normal weight. During lock-down our population shopped for groceries 1 time or less per week (76.8%); maintained the same consumption of fruits (45.2%), vegetables (50.6%), dairy products (61.9%), pulses (64.9%), fish/sea-food (57.7%), white meat (77.4%), red and processed meat (71.4%), pastries and snacks (48.2%), rice/pasta/potatoes (70.2%) and nuts (62.5%), spirits (98.8%) and sugary drinks (91.7%). Cooking time increased (73.2%) and the consumption decreased of low alcohol drinks (60.1%), spirits (75%) and sugary drinks (57.1%), and physical activity also diminished (49.4%). University Employees (UE) gained more weight (1.01 ± 0.02) than students (0.99 ± 0.03) (p < 0.05) during the confinement period. A total of 79.8% of the participants obtained a Medium/High Adherence to the MD during lockdown. Emotional and very emotional eaters were higher in the female group (p < 0.01). In the event of further confinement, strategies should be implemented to promote a balanced and healthy diet together with the practice of physical activity, taking special care of the female and UE groups

    Potential health benefit of garlic based on human intervention studies: A brief overview

    No full text
    Garlic is a polyphenolic and organosulfur enriched nutraceutical spice consumed since ancient times. Garlic and its secondary metabolites have shown excellent health‐promoting and disease‐preventing effects on many human common diseases, such as cancer, cardiovascular and metabolic disorders, blood pressure, and diabetes, through its antioxidant, anti‐inflammatory, and lipid‐lowering properties, as demonstrated in several in vitro, in vivo, and clinical studies. The present review aims to provide a comprehensive overview on the consumption of garlic, garlic preparation, garlic extract, and garlic extract‐derived bioactive constituents on oxidative stress, inflammation, cancer, cardiovascular and metabolic disorders, skin, bone, and other common diseases. Among the 83 human interventional trials considered, the consumption of garlic has been reported to modulate multiple biomarkers of different diseases; in addition, its combination with drugs or other food matrices has been shown to be safe and to prolong their therapeutic effects. The rapid metabolism and poor bioavailability that have limited the therapeutic use of garlic in the last years are also discussed

    Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: Interplay between nanostructure and composition

    No full text
    Here we present a quantitative mechanism-based investigation aimed at comparing the cell uptake, intracellular trafficking, endosomal escape and final fate of lipoplexes and lipid-protamine/deoxyribonucleic acid (DNA) (LPD) nanoparticles (NPs) in living Chinese hamster ovary (CHO) cells. As a model, two lipid formulations were used for comparison. The first formulation is made of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic lipid dioleoylphosphocholine (DOPC), while the second mixture is made of the cationic 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE). Our findings indicate that lipoplexes are efficiently taken up through fluid-phase macropinocytosis, while a less efficient uptake of LPD NPs occurs through a combination of both macropinocytosis and clathrin-dependent pathways. Inside the cell, both lipoplexes and LPD NPs are actively transported towards the cell nucleus, as quantitatively addressed by spatio-temporal image correlation spectroscopy (STICS). For each lipid formulation, LPD NPs escape from endosomes more efficiently than lipoplexes. When cells were treated with DOTAP-DOPC-containing systems the majority of the DNA was trapped in the lysosome compartment, suggesting that extensive lysosomal degradation was the rate-limiting factors in DOTAP-DOPC-mediated transfection. On the other side, escape from endosomes is large for DC-Chol-DOPE-containing systems most likely due to DOPE and cholesterol-like molecules, which are able to destabilize the endosomal membrane. The lipid-dependent and structure-dependent enhancement of transfection activity suggests that DNA is delivered to the nucleus synergistically: the process requires both the membrane-fusogenic activity of the nanocarrier envelope and the employment of lipid species with intrinsic endosomal rupture ability. © 2013 Elsevier B.V

    Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: Interplay between nanostructure and composition

    No full text
    Here we present a quantitative mechanism-based investigation aimed at comparing the cell uptake, intracellular trafficking, endosomal escape and final fate of lipoplexes and lipid-protamine/deoxyribonucleic acid (DNA) (LPD) nanoparticles (NPs) in living Chinese hamster ovary (CHO) cells. As a model, two lipid formulations were used for comparison. The first formulation is made of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic lipid dioleoylphosphocholine (DOPC), while the second mixture is made of the cationic 3\uce\ub2-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE). Our findings indicate that lipoplexes are efficiently taken up through fluid-phase macropinocytosis, while a less efficient uptake of LPD NPs occurs through a combination of both macropinocytosis and clathrin-dependent pathways. Inside the cell, both lipoplexes and LPD NPs are actively transported towards the cell nucleus, as quantitatively addressed by spatio-temporal image correlation spectroscopy (STICS). For each lipid formulation, LPD NPs escape from endosomes more efficiently than lipoplexes. When cells were treated with DOTAP-DOPC-containing systems the majority of the DNA was trapped in the lysosome compartment, suggesting that extensive lysosomal degradation was the rate-limiting factors in DOTAP-DOPC-mediated transfection. On the other side, escape from endosomes is large for DC-Chol-DOPE-containing systems most likely due to DOPE and cholesterol-like molecules, which are able to destabilize the endosomal membrane. The lipid-dependent and structure-dependent enhancement of transfection activity suggests that DNA is delivered to the nucleus synergistically: the process requires both the membrane-fusogenic activity of the nanocarrier envelope and the employment of lipid species with intrinsic endosomal rupture ability. \uc2\ua9 2013 Elsevier B.V

    Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: Possible implications for cancer treatment

    No full text
    Fasting, caloric restriction and foods or compounds mimicking the biological effects of caloric restriction, known as caloric restriction mimetics, have been associated with a lower risk of age-related diseases, including cardiovascular diseases, cancer and cognitive decline, and a longer lifespan. Reduced calorie intake has been shown to stimulate cancer immunosurveillance, reducing the migration of immunosuppressive regulatory T cells towards the tumor bulk. Autophagy stimulation via reduction of lysine acetylation, increased sensitivity to chemo- and immunotherapy, along with a reduction of insulin-like growth factor 1 and reactive oxygen species have been described as some of the major effects triggered by caloric restriction. Fasting and caloric restriction have also been shown to beneficially influence gut microbiota composition, modify host metabolism, reduce total cholesterol and triglyceride levels, lower diastolic blood pressure and elevate morning cortisol level, with beneficial modulatory effects on cardiopulmonary fitness, body fat and weight, fatigue and weakness, and general quality of life. Moreover, caloric restriction may reduce the carcinogenic and metastatic potential of cancer stem cells, which are generally considered responsible of tumor formation and relapse. Here, we reviewed in vitro and in vivo studies describing the effects of fasting, caloric restriction and some caloric restriction mimetics on immunosurveillance, gut microbiota, metabolism, and cancer stem cell growth, highlighting the molecular and cellular mechanisms underlying these effects. Additionally, studies on caloric restriction interventions in cancer patients or cancer risk subjects are discussed. Considering the promising effects associated with caloric restriction and caloric restriction mimetics, we think that controlled-randomized large clinical trials are warranted to evaluate the inclusion of these non-pharmacological approaches in clinical practice

    A novel 39-tRNAGlu-derived fragment acts as a tumor-suppressor in breast cancer by targeting nucleolin

    No full text
    tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control &gt; early cancer &gt; metastatic cancer). tRF3E down-regulation was recapitulated in D16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53mRNA.The binding properties ofNCL-tRF3E complex, predicted in silico and analyzed byEMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.—Falconi, M.,Giangrossi, M., Elexpuru Zabaleta, M.,Wang, J.,Gambini,V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 39-tRNAGlu-derived fragment acts as a tumor-suppressor in breast cancer by targeting nucleolin
    corecore