182 research outputs found

    Association between age at diabetes onset or diabetes duration and subsequent risk of pancreatic cancer: Results from a longitudinal cohort and mendelian randomization study

    Full text link
    Background: The aim of the study is to estimate the incidence of pancreatic cancer among individuals with new-onset type 2 Diabetes (T2DM) and evaluate the relationship of pancreatic cancer risk with age at diabetes onset and diabetes duration. Methods: This longitudinal cohort study included 428,362 new-onset T2DM patients in Shanghai and Mendelian randomization (MR) in the east-Asian population were used to investigate the association. Incidence rates of pancreatic cancer in all patients and by subgroups were calculated and compared to the general population. Findings: A total of 1056 incident pancreatic cancer cases were identified during eight consecutive years of follow-up. The overall pancreatic cancer annual incidence rate was 55·28/100,000 person years in T2DM patients, higher than that in the general population, with a standardized incidence ratio (SIR) of 1·54 (95% confidence interval [CI], 1·45–1·64). The incidence of pancreatic cancer increased with age and a significantly higher incidence was observed in the older groups with T2DM. However, the relative pancreatic cancer risk was inversely related to age of T2DM onset, and a higher SIR of 5·73 (95%CI, 4·49–7·22) was observed in the 20–54 years old group. The risk of pancreatic cancer was elevated at any diabetes duration. Fasting blood glucose ≥10·0 mmol/L was associated with increased risk of pancreatic cancer. MR analysis indicated a positive association between T2DM and pancreatic cancer risk. Interpretation: Efforts toward early and close follow-up programs, especially in individuals with young-onset T2DM, and the improvement of glucose control might represent effective strategies for improving the detection and results of treatment of pancreatic cancer. Funding: Chinese National Natural Science Foundation

    A BAC-Based Transgenic Mouse Specifically Expresses an Inducible Cre in the Urothelium

    Get PDF
    Cre-loxp mediated conditional knockout strategy has played critical roles for revealing functions of many genes essential for development, as well as the causal relationships between gene mutations and diseases in the postnatal adult mice. One key factor of this strategy is the availability of mice with tissue- or cell type-specific Cre expression. However, the success of the traditional molecular cloning approach to generate mice with tissue specific Cre expression often depends on luck. Here we provide a better alternative by using bacterial artificial chromosome (BAC)-based recombineering to insert iCreERT2 cDNA at the ATG start of the Upk2 gene. The BAC-based transgenic mice express the inducible Cre specifically in the urothelium as demonstrated by mRNA expression and staining for LacZ expression after crossing with a Rosa26 reporter mouse. Taking into consideration the size of the gene of interest and neighboring genes included in a BAC, this method should be widely applicable for generation of mice with tissue specific gene expression or deletions in a more specific manner than previously reported

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    The Insulin-Like Growth Factor System in the Long-Lived Naked Mole-Rat.

    Get PDF
    Naked mole-rats (Heterocephalus glaber) (NMRs) are the longest living rodents known. They show negligible senescence, and are resistant to cancers and certain damaging effects associated with aging. The insulin-like growth factors (IGFs) have pluripotent actions, influencing growth processes in virtually every system of the body. They are established contributors to the aging process, confirmed by the demonstration that decreased IGF signaling results in life-extending effects in a variety of species. The IGFs are likewise involved in progression of cancers by mediating survival signals in malignant cells. This report presents a full characterization of the IGF system in the NMR: ligands, receptors, IGF binding proteins (IGFBPs), and IGFBP proteases. A particular emphasis was placed on the IGFBP protease, pregnancy-associated plasma protein-A (PAPP-A), shown to be an important lifespan modulator in mice. Comparisons of IGF-related genes in the NMR with human and murine sequences indicated no major differences in essential parts of the IGF system, including PAPP-A. The protease was shown to possess an intact active site despite the report of a contradictory genome sequence. Furthermore, PAPP-A was expressed and translated in NMRs cells and retained IGF-dependent proteolytic activity towards IGFBP-4 and IGF-independent activity towards IGFBP-5. However, experimental data suggest differential regulatory mechanisms for PAPP-A expression in NMRs than those described in humans and mice. This overall description of the IGF system in the NMR represents an initial step towards elucidating the complex molecular mechanisms underlying longevity, and how these animals have evolved to ensure a delayed and healthy aging process

    The Current State of Proteomics in GI Oncology

    Get PDF
    Proteomics refers to the study of the entire set of proteins in a given cell or tissue. With the extensive development of protein separation, mass spectrometry, and bioinformatics technologies, clinical proteomics has shown its potential as a powerful approach for biomarker discovery, particularly in the area of oncology. More than 130 exploratory studies have defined candidate markers in serum, gastrointestinal (GI) fluids, or cancer tissue. In this article, we introduce the commonly adopted proteomic technologies and describe results of a comprehensive review of studies that have applied these technologies to GI oncology, with a particular emphasis on developments in the last 3 years. We discuss reasons why the more than 130 studies to date have had little discernible clinical impact, and we outline steps that may allow proteomics to realize its promise for early detection of disease, monitoring of disease recurrence, and identification of targets for individualized therapy

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio
    corecore