53 research outputs found

    Nocturnal plant respiration is under strong non-temperature control

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The leaf respiration data measured as part of this study and collected from the literature together with annual gridded JULES output generated in simulations of this study are available at https://doi.org/10.5281/zenodo.7037530. WFDEI meteorological forcing data is available at the DATAGURU website for climate-related data at Lund University (https://DATAGURU.lu.se, then go to “Explore available datasets”). This allows extraction of data from the global domain, a user-defined grid box or region for a specified time interval. Ftp downloads are possible via the unix/linux command line, site = ftp.iiasa.ac.at, username = rfdata and password = forceDATA, this takes the user to the WATCH Forcing DATA files, then switch to the WFDEI directory using: ‘cd WFDEI’. The /WFDEI directory includes files listing grid box elevations and locations Annual CO2 concentrations are available at https://gml.noaa.gov/ccgg/trends/gl_data.html Source data are provided with this paper.Code availability: Python code for data analysis is available under https://doi.org/10.5281/zenodo.7037530. This study uses JULES, two branches of JULES-vn5.2. https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/linamercado/r14338_circadian at revision 22682 for TDQ10 simulations and https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/douglasclark/vn5.2_diurnal_resp at revision 22681 for simulations with constant Q10 which are available on the Met Office Science Repository System (MOSRS; https://code.metoffice.gov.uk/trac/jules; registration required https://jules.jchmr.org/content/getting-started). Simulations were performed using Rose suites u-ce999 (new formulation) and u-ce859 for simulations with constant Q10, and u-bs101 (with new formulation) and u-ce767 for simulations with TDQ10 also available through MOSRS.Most biological rates depend on the rate of respiration. Temperature variation is typically considered the main driver of daily plant respiration rates, assuming a constant daily respiration rate at a set temperature. Here, we show empirical data from 31 species from temperate and tropical biomes to demonstrate that the rate of plant respiration at a constant temperature decreases monotonically with time through the night, on average by 25% after 8 h of darkness. Temperature controls less than half of the total nocturnal variation in respiration. A new universal formulation is developed to model and understand nocturnal plant respiration, combining the nocturnal decrease in the rate of plant respiration at constant temperature with the decrease in plant respiration according to the temperature sensitivity. Application of the new formulation shows a global reduction of 4.5 -6 % in plant respiration and an increase of 7-10% in net primary production for the present-day.Natural Environment Research Council (NERC)University of ExeterMet Office Hadley Centre Climate Programm

    Bonobo personality traits are heritable and associated with vasopressin receptor gene 1a variation

    Get PDF
    Despite being closely related, bonobos and chimpanzees show remarkable behavioral differences, the proximate origins of which remain unknown. This study examined the link between behavioral variation and variation in the vasopressin 1a receptor gene (Avpr1a) in bonobos. Chimpanzees are polymorphic for a ~360 bp deletion (DupB), which includes a microsatellite (RS3) in the 5â€Č promoter region of Avpr1a. In chimpanzees, the DupB deletion has been linked to lower sociability, lower social sensitivity, and higher anxiety. Chimpanzees and bonobos differ on these traits, leading some to believe that the absence of the DupB deletion in bonobos may be partly responsible for these differences, and to the prediction that similar associations between Avpr1a genotypes and personality traits should be present in bonobos. We identified bonobo personality dimensions using behavioral measures (Sociability(B), Boldness(B), Openness(B), Activity(B)) and trait ratings (Assertiveness(R), Conscientiousness(R), Openness(R), Agreeableness(R), Attentiveness(R), Extraversion(R)). In the present study we found that all 10 dimensions have nonzero heritabilities, indicating there is a genetic basis to personality, and that bonobos homozygous for shorter RS3 alleles were lower in Attentiveness(R) and higher in Openness(B). These results suggest that variations in Avpr1a genotypes explain both within and between species differences in personality traits of bonobos and chimpanzees

    Application of ecological momentary assessment in stress-related diseases

    Get PDF
    Many physical diseases have been reported to be associated with psychosocial factors. In these diseases, assessment relies mainly on subjective symptoms in natural settings. Therefore, it is important to assess symptoms and/or relationships between psychosocial factors and symptoms in natural settings. Symptoms are usually assessed by self-report when patients visit their doctors. However, self-report by recall has an intrinsic problem; "recall bias". Recently, ecological momentary assessment (EMA) has been proposed as a reliable method to assess and record events and subjective symptoms as well as physiological and behavioral variables in natural settings. Although EMA is a useful method to assess stress-related diseases, it has not been fully acknowledged, especially by clinicians. Therefore, the present brief review introduces the application and future direction of EMA for the assessment and intervention for stress-related diseases

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    Tough GC beats transgene silencing

    No full text
    • 

    corecore