286 research outputs found
Imaging the homogeneous nucleation during the melting of superheated colloidal crystals
The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities
Enzyme classification with peptide programs: a comparative study
<p>Abstract</p> <p>Background</p> <p>Efficient and accurate prediction of protein function from sequence is one of the standing problems in Biology. The generalised use of sequence alignments for inferring function promotes the propagation of errors, and there are limits to its applicability. Several machine learning methods have been applied to predict protein function, but they lose much of the information encoded by protein sequences because they need to transform them to obtain data of fixed length.</p> <p>Results</p> <p>We have developed a machine learning methodology, called peptide programs (PPs), to deal directly with protein sequences and compared its performance with that of Support Vector Machines (SVMs) and BLAST in detailed enzyme classification tasks. Overall, the PPs and SVMs had a similar performance in terms of Matthews Correlation Coefficient, but the PPs had generally a higher precision. BLAST performed globally better than both methodologies, but the PPs had better results than BLAST and SVMs for the smaller datasets.</p> <p>Conclusion</p> <p>The higher precision of the PPs in comparison to the SVMs suggests that dealing with sequences is advantageous for detailed protein classification, as precision is essential to avoid annotation errors. The fact that the PPs performed better than BLAST for the smaller datasets demonstrates the potential of the methodology, but the drop in performance observed for the larger datasets indicates that further development is required.</p> <p>Possible strategies to address this issue include partitioning the datasets into smaller subsets and training individual PPs for each subset, or training several PPs for each dataset and combining them using a bagging strategy.</p
Effect of Control Strategies on Prevalence, Incidence and Re-infection of Clonorchiasis in Endemic Areas of China
Clonorchiasis is a liver fluke disease prevalent in East Asia, which is transmitted to humans mainly by eating raw freshwater fish. It induces various complications in the liver or bile duct including cholelithiasis, cholecystitis, cholangitis, and cirrhosis. Clonorchis sinensis has been known to cause cholangiocarcinoma, and is still a major health problem in endemic areas. People in endemic areas are repeatedly infected with C. sinensis, as they continue to consume raw freshwater fish in spite of control activities and availability of a highly effective drug, praziquantel. Reservoir hosts such as cats, dogs, and pigs supply eggs continuously to the environment and act as a source of infection. The present study analyzed the data produced by the Korea-China collaborative project for helminthiasis control in China during 2001–2004 to find out effective chemotherapeutic control strategies with praziquantel in endemic areas and to evaluate their effects on the transmission of C. sinensis infection by repeated mass or selective treatment. The four-year control trial found that repeated treatment is essential to the effective reduction of prevalence and infection intensity in heavily endemic areas. Mass chemotherapy is more effective than selective treatment, and more repeated treatments produce better outcomes in clonorchiasis control. Health education to change the habit of consuming raw or undercooked fish is an important and practical measure to prevent and reduce human infections in endemic areas. Together with chemotherapy, health education could be highly effective and produce sustainable effects in clonorchiasis control. Treatment of reservoirs, if applicable, will contribute to reduce the source of infection
A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities
We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties
Amyloid-Like Aggregates of the Yeast Prion Protein Ure2 Enter Vertebrate Cells by Specific Endocytotic Pathways and Induce Apoptosis
BACKGROUND: A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2. CONCLUSIONS/SIGNIFICANCE: The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases
A two-step target binding and selectivity support vector machines approach for virtual screening of dopamine receptor subtype-selective ligands
10.1371/journal.pone.0039076PLoS ONE76
Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation
TiO2nanostructures with fascinating morphologies like cubes, spheres, and rods were synthesized by a simple microwave irradiation technique. Tuning of different morphologies was achieved by changing the pH and the nature of the medium or the precipitating agent. As-synthesized titania nanostructures were characterized by X-ray diffraction (XRD), UV–visible spectroscopy, infrared spectroscopy (IR), BET surface area, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Photocatalytic dye degradation studies were conducted using methylene blue under ultraviolet light irradiation. Dye degradation ability for nanocubes was found to be superior to the spheres and the rods and can be attributed to the observed high surface area of nanocubes. As-synthesized titania nanostructures have shown higher photocatalytic activity than the commercial photocatalyst Degussa P25 TiO2
HelmCoP: An Online Resource for Helminth Functional Genomics and Drug and Vaccine Targets Prioritization
A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html
- …