301 research outputs found

    Growth of GaSb and GaInAsSb layers for thermophotovoltaic cells by liquid phase epitaxy

    Get PDF
    GaSb based cells as receivers in thermophotovoltaic system have attracted great interest and been extensively studied in the recent 15 years. Although nowadays the manufacturing technologies have made a great progress, there are still some details need to make a further study. In this paper, undoped and doped GaSb layers were grown on n-GaSb (100) substrates from both Ga-rich and Sb-rich solutions using liquid phase epitaxy (LPE) technique. The nominal segregation coefficients k of intentional doped Zn were 1.4 and 8.8 determined from the two kinds of GaSb epitaxial layers. Additionally, compared with growing from Ga-rich solutions, the growing processes from Sb-rich solutions were much easier to control and the surface morphologies of epitaxial layers were smoother. Furthermore, in order to broaden the absorbing edge, Ga 1-xInxAsySb1-y quaternary alloys were grown on both GaSb and InAs substrates from In-rich solutions, under different temperature respectively

    Nucleosomes Correlate with In Vivo Progression Pattern of De Novo Methylation of p16 CpG Islands in Human Gastric Carcinogenesis

    Get PDF
    BACKGROUND: The exact relationship between nucleosome positioning and methylation of CpG islands in human pathogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the nucleosome position within the p16 CpG island and established a seeding methylation-specific PCR (sMSP) assay based on bisulfite modification to enrich the p16 alleles containing methylated-CpG at the methylation "seeding" sites within its intron-1 in gastric carcinogenesis. The sMSP-positive rate in primary gastric carcinoma (GC) samples (36/40) was significantly higher than that observed in gastritis (19/45) or normal samples (7/13) (P<0.01). Extensive clone sequencing of these sMSP products showed that the density of methylated-CpGs in p16 CpG islands increased gradually along with the severity of pathological changes in gastric tissues. In gastritis lesions the methylation was frequently observed in the region corresponding to the exon-1 coding-nucleosome and the 5'UTR-nucleosome; the methylation was further extended to the region corresponding to the promoter-nucleosome in GC samples. Only few methylated-CpG sites were randomly detected within p16 CpG islands in normal tissues. The significantly inversed relationship between the p16 exon-1 methylation and its transcription was observed in GC samples. An exact p16 promoter-specific 83 bp-MSP assay confirms the result of sMSP (33/55 vs. 1/6, P<0.01). In addition, p16 methylation in chronic gastritis lesions significantly correlated with H. pylori infection; however, such correlation was not observed in GC specimens. CONCLUSIONS/SIGNIFICANCE: It was determined that de novo methylation was initiated in the coding region of p16 exon-1 in gastritis, then progressed to its 5'UTR, and ultimately to the proximal promoter in GCs. Nucleosomes may function as the basic extension/progression unit of de novo methylation of p16 CpG islands in vivo

    Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays

    Get PDF
    Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines

    Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review.

    Get PDF
    Background: Wearable sensors are portable measurement tools that are becoming increasingly popular for the measurement of joint angle in the upper limb. With many brands emerging on the market, each with variations in hardware and protocols, evidence to inform selection and application is needed. Therefore, the objectives of this review were related to the use of wearable sensors to calculate upper limb joint angle. We aimed to describe (i) the characteristics of commercial and custom wearable sensors, (ii) the populations for whom researchers have adopted wearable sensors, and (iii) their established psychometric properties. Methods: A systematic review of literature was undertaken using the following data bases: MEDLINE, EMBASE, CINAHL, Web of Science, SPORTDiscus, IEEE, and Scopus. Studies were eligible if they met the following criteria: (i) involved humans and/or robotic devices, (ii) involved the application or simulation of wearable sensors on the upper limb, and (iii) calculated a joint angle. Results: Of 2191 records identified, 66 met the inclusion criteria. Eight studies compared wearable sensors to a robotic device and 22 studies compared to a motion analysis system. Commercial (n = 13) and custom (n = 7) wearable sensors were identified, each with variations in placement, calibration methods, and fusion algorithms, which were demonstrated to influence accuracy. Conclusion: Wearable sensors have potential as viable instruments for measurement of joint angle in the upper limb during active movement. Currently, customised application (i.e. calibration and angle calculation methods) is required to achieve sufficient accuracy (error < 5Β°). Additional research and standardisation is required to guide clinical application

    The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs.</p> <p>Methods</p> <p>Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated.</p> <p>Results</p> <p>We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity.</p> <p>Conclusion</p> <p>Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis.</p

    Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Milkweeds (<it>Asclepias </it>L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (<it>Asclepias syriaca </it>L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing <it>A. syriaca </it>as a model in ecology and evolution.</p> <p>Results</p> <p>A 0.5Γ— genome of <it>A. syriaca </it>was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: <it>accD, clpP</it>, and <it>ycf1</it>. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/<it>copia</it>-like retroelements are the most common repeat type in the milkweed genome. At least one <it>A. syriaca </it>microread hit 88% of <it>Catharanthus roseus </it>(Apocynaceae) unigenes (median coverage of 0.29Γ—) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14Γ—). From this partial characterization of the <it>A. syriaca </it>genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed.</p> <p>Conclusions</p> <p>The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and <it>A. syriaca </it>in particular, as ecological and evolutionary models.</p
    • …
    corecore