665 research outputs found

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Synergistic Activation of Cardiac Genes by Myocardin and Tbx5

    Get PDF
    Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF) and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF) and alpha myosin heavy chain (α-MHC), but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC). We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs). Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases

    Electronic structure of the iron-based superconductor LaOFeP

    Full text link
    The recent discovery of superconductivity in the so-called iron-oxypnictide family of compounds has generated intense interest. The layered crystal structure with transition metal ions in planar square lattice form and the discovery of spin-density-wave order near 130 K seem to hint at a strong similarity with the copper oxide superconductors. A burning current issue is the nature of the ground state of the parent compounds. Two distinct classes of theories have been put forward depending on the underlying band structures: local moment antiferromagnetic ground state for strong coupling approach and itinerant ground state for weak coupling approach. The local moment magnetism approach stresses on-site correlations and proximity to a Mott insulating state and thus the resemblance to cuprates; while the latter approach emphasizes the itinerant electron physics and the interplay between the competing ferromagnetic and antiferromagnetic fluctuations. Such a controversy is partly due to the lack of conclusive experimental information on the electronic structures. Here we report the first angle-resolved photoemission spectroscopy (ARPES) investigation of LaOFeP (Tc = 5.9 K), the first reported iron-based superconductor. Our results favor the itinerant ground state, albeit with band renormalization. In addition, our data reveal important differences between these and copper based superconductors.Comment: 17 pages, 4 figure

    Low-Temperature Preparation of Superparamagnetic CoFe2O4 Microspheres with High Saturation Magnetization

    Get PDF
    Based on a low-temperature route, monodispersed CoFe2O4 microspheres (MSs) were fabricated through aggregation of primary nanoparticles. The microstructural and magnetic characteristics of the as-prepared MSs were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmitting electron microscopy, and vibrating sample magnetometer. The results indicate that the diameters of CoFe2O4 MSs with narrow size distribution can be tuned from over 200 to ~330 nm. Magnetic measurements reveal these MSs exhibit superparamagnetic behavior at room temperature with high saturation magnetization. Furthermore, the mechanism of formation of the monodispersed CoFe2O4 MSs was discussed on the basis of time-dependent experiments, in which hydrophilic PVP plays a crucial role

    Three-Dimensional Graphene Nano-Networks with High Quality and Mass Production Capability via Precursor-Assisted Chemical Vapor Deposition

    Get PDF
    We report a novel approach to synthesize chemical vapor deposition-grown three-dimensional graphene nano-networks (3D-GNs) that can be mass produced with large-area coverage. Annealing of a PVA/iron precursor under a hydrogen environment, infiltrated into 3D-assembled-colloidal silicas reduces iron ions and generates few-layer graphene by precipitation of carbon on the iron surface. The 3D-GN can be grown on any electronic device-compatible substrate, such as Al2O3, Si, GaN, or Quartz. The conductivity and surface area of a 3D-GN are 52 S/cm and 1,025 m(2)/g, respectively, which are much better than the previously reported values. Furthermore, electrochemical double-layer capacitors based on the 3D-GN have superior supercapacitor performance with a specific capacitance of 245 F/g and 96.5% retention after 6,000 cycles due to the outstanding conductivity and large surface area. The excellent performance of the 3D-GN as an electrode for supercapacitors suggests the great potential of interconnected graphene networks in nano-electronic devices and energy-related materials.open15

    The NOD/RIP2 Pathway Is Essential for Host Defenses Against Chlamydophila pneumoniae Lung Infection

    Get PDF
    Here we investigated the role of the Nod/Rip2 pathway in host responses to Chlamydophila pneumoniae–induced pneumonia in mice. Rip2−/− mice infected with C. pneumoniae exhibited impaired iNOS expression and NO production, and delayed neutrophil recruitment to the lungs. Levels of IL-6 and IFN-γ levels as well as KC and MIP-2 levels in bronchoalveolar lavage fluid (BALF) were significantly decreased in Rip2−/− mice compared to wild-type (WT) mice at day 3. Rip2−/− mice showed significant delay in bacterial clearance from the lungs and developed more severe and chronic lung inflammation that continued even on day 35 and led to increased mortality, whereas WT mice cleared the bacterial load, recovered from acute pneumonia, and survived. Both Nod1−/− and Nod2−/− mice also showed delayed bacterial clearance, suggesting that C. pneumoniae is recognized by both of these intracellular receptors. Bone marrow chimera experiments demonstrated that Rip2 in BM-derived cells rather than non-hematopoietic stromal cells played a key role in host responses in the lungs and clearance of C. pneumoniae. Furthermore, adoptive transfer of WT macrophages intratracheally was able to rescue the bacterial clearance defect in Rip2−/− mice. These results demonstrate that in addition to the TLR/MyD88 pathway, the Nod/Rip2 signaling pathway also plays a significant role in intracellular recognition, innate immune host responses, and ultimately has a decisive impact on clearance of C. pneumoniae from the lungs and survival of the infectious challenge

    Phase Equilibria in the Fe-Mo-Ti Ternary System at 1173 K (900 °C) and 1023 K (750 °C)

    Get PDF
    Alloys with fine-scale eutectic microstructures comprising Ti-based A2 and TiFe B2 phases have been shown to have excellent mechanical properties. In this study, the potential of alloys with further refined A2-B2 microstructures formed through solid-state precipitation has been explored by analyzing a series of six alloys within the Fe-Mo-Ti ternary system. Partial isothermal sections of this system at 1173 K (900 °C) and 1023 K (750 °C) were constructed, from which the ternary solubility limits of the A2 (Ti, Mo), B2 TiFe, D85_5 Fe7_7Mo6_6 , and C14 Fe2_2Ti phases were determined. With these data, the change in solubility of Fe in the A2 phase with temperature, which provides the driving force for precipitation of B2 TiFe, was determined and used to predict the maximum potential volume fraction of B2 TiFe precipitates that may be formed in an A2 (Ti, Mo) matrix.Rolls-Royce/EPSRC Strategic Partnership (EP/H022309/1, EP/H500375/1, and EP/M005607/1

    Branching fraction measurements of χc0 and χc2 to π0π0 and ηη

    Get PDF
    Using a sample of 1.06×108 ψ ′ decays collected by the BESIII detector, χc0 and χc2 decays into π0π0 and ηη are studied. The branching fraction results are Br(χc0→π 0π0)=(3.23±0.03±0.23±0.14)×10 -3, Br(χc2→π0π0)=(8.8±0.2±0.6±0.4)×10 -4, Br(χc0→ηη)=(3.44±0.10±0. 24±0.2)×10 -3, and Br(χc2→ηη)=(6. 5±0.4±0.5±0.3)×10 -4, where the uncertainties are statistical, systematic due to this measurement, and systematic due to the branching fractions of ψ ′→ γχcJ. The results provide information on the decay mechanism of χc states into pseudoscalars. © 2010 The American Physical Society.published_or_final_versio
    corecore