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derivatives via density functional theory
Yuan Mei-Rong1,2*, Song Yu1,2 and Xu Yong-Jin1,2
Abstract

Quantum chemistry calculations have been performed to compute the optimized geometries, vibrational frequencies,
and Mulliken Charges at B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels for 3-(4-fluorophenyl)thiophene (FPT),
3-(4-nitrophenyl)thiophene (NPT) and 3-(4-cyanophenyl) thiophene (CPT) in the ground state. In addition, the 13C
and 1H NMR are calculated by B3LYP/6-311++G(d,p) and B3LYP/6-311++G(2d,2p) methods. The singlet electronic
excited state properties of the three compounds were investigated using the time-dependent density functional
method (TD-DFT) at the B3LYP/6-311++G(d,p)//TD- B3LYP/6-311++G(d,p) level of theory. The influence of the
substituted groups on C9 atom is discussed.

Keywords: Thiophene; DFT; Vibrational spectra; NMR analysis; UV–vis spectra
1. Introduction
Thiophene is one of the most studied heterocycles: it is
easy to process, chemically stable, and its synthetic appli-
cations have been a constant matter of investigation for
many years (Giovanna et al. 2005). π-Conjugated polymers
and oligomers based on thiophene building blocks are of
immense interest in current research due to their interest-
ing electronic and photophysical properties (Kim et al.
2006; Kline et al. 2006; Patra et al. 2011; Zhang et al. 2011;
Marsh et al. 2014; Yumura and Yamashita 2014). Recent
literature contains numerous reports on the synthesis and
properties of molecular systems having thiophene unit
(Zhang et al. 2009; Ustamehmetoglu 2014; Dai et al. 2007;
Cho et al. 2012; Patil et al. 2011; Balaji et al. 2011). The
electronic properties exhibited by the thiophene and poly-
thiophene derivatives have made them important in or-
ganic field effect transistors (OFET) (Yang et al. 2005;
Mushrush et al. 2003; Osaka et al. 2007), organic light
emitting diodes (OLED) (Cicoira et al. 2006; Lim et al.
2013), solar cells (Hara et al. 2003; Cao et al. 2009;
Thomas et al. 2008) and supercapacitors (Sivaraman et al.
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2013; Yue et al. 2012; Karthikeyan et al. 2012). The elec-
tronic properties of thiophene-based materials can be
tuned over a wide range through chemical or architecture
modification. It includes different substitution at 2, 3 or
4-position of thiophene molecules.
In most cases, the 2 and 5 positions of thiophene are

used for the polymerization. The modification of the mol-
ecules for special electronic properties is operated on the
3 and 4-positions (Su et al. 2002; Osaka et al. 1997). Poly
(3-phenylthiophene) has represented such a purpose. The
introduction of a phenyl group into the backbone of poly-
thiophene stabilizes the conjugated π-bonds system and
makes it an attractive low band gap material for the use in
supercapacitors (Zhang and Shi 2004). The substitution of
fluorophenyl group on β-position of thiophene can im-
prove the thermal stability of corresponding polymer. Poly
(3-(4-fluorophenyl)thiophene) has a potential application
in type III supercapacitors with improved both p-doping
and n-doping performance (Shen et al. 2005; Wei et al.
2006).
Density functional theory (DFT) approaches, especially

those using hybrid functional, have evolved to a powerful
and very reliable tool, being routinely used for the deter-
mination of various molecular properties (Li et al. 2011).
B3LYP functional has been shown to provide an excellent
compromise between accuracy and computational spectra
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for molecules of large and medium size (Lu et al. 2013;
Yanai et al. 2004). To the best of our knowledge, no theor-
etical work is done on the 3-phenylthiophene derivatives.
Therefore, we made an investigation and studied the struc-
ture and spectra of the title compounds using the DFT
(B3LYP) method. The aim of our work is to compare the
different properties among the three compounds which
have different functional groups on the 3-phenylthiophene
molecules.
2. Computational methods
All DFT calculations of the title compounds (Figure 1)
were carried out using Gaussian09 program package using
default thresholds and parameters (Gaussian 09, Revision
D.01 et al. 2009). The ground-state structural geometries
were fully optimized at the B3LYP method (Yanai et al.
2004) along with the standard 6-31G(d) and 6-311++G(d,p)
basis sets. All the parameters were allowed to relax and
all the calculations converged to an optimized geometry
which corresponds to a true energy minimum revealed
by the lack of imaginary frequencies. Vibration frequencies
were calculated by using B3LYP/6-31G(d) and B3LYP/
6-311++G(d,p) methods (EI-Azhary and Suter 1996). 1H
and 13C NMR chemical shifts are calculated with GIAO
approach at B3LYP/6-311++G(d,p) level. The obtained
chemical shift values are relative to the shielding of tet-
ramethylsilane (TMS) (Wolff and Ziegler 1998). Time-
dependent density functional theory (TD-DFT) (Jacquemin
et al. 2009) calculations of electronic spectra were per-
formed on the optimized structure at B3LYP/6-31++G
(d,p) levels.
Figure 1 Molecular structures and atom numbering scheme of the tit
thiophene (NPT), 3-(4-cyanophenyl)thiophene (CPT)).
3. Results and discussion
3.1 Molecular geometry
The optimized geometries of the title compounds have
been obtained at B3LYP/6-31G(d) and B3LYP/6-311++G
(d,p) levels. Some optimized geometrical parameters are
listed in Table 1. To the best of our knowledge, experi-
mental data on the geometric structures of the three title
compounds are not available in the literature.
It is noted from Table 1 that the values of optimized

geometrical parameters calculated at B3LYP/6-311++G
(d,p) are smaller than that calculated at B3LYP/6-31G(d)
level except for the torsion angle of C2-C3-C6-C7. There
are little differences on the bond lengths and bond an-
gles among the three title compounds, which indicate
that the both the two levels have almost the same calcu-
lated accuracy in this system. The C-C bond lengths in
benzene ring are between 1.362-1.408 Å, which is much
shorter than the typical C-C single bond (1.54 Å) and
longer than the C = C double bond (1.34 Å) (Margules
et al. 1999). For S1-C2 and S1-C5 bonds, calculated car-
bon sulfur bond lengths are between 1.725-1.736 Å,
which are smaller than the bond length of the single C-S
bond (1.82 Å) (Ikawa and Whalley 1996). For FPT, the
C9-F bond length is 1.356 Å at B3LYP/6-311++G(d,p)
level. The C9-N and C9-C bond lengths are 1.474 Å and
1.430 Å for NPT and CPT, respectively, which stay in
the normal range. For NPT, the lengths of the two N-O
bonds have almost the same value, which shows a good
symmetry within the molecule.
The bond angles C2-S-C5 in the thiophene ring have

the value between 91.36°-91.46° for all the three com-
pounds, indicating that the S atom is of sp2 hybridization
le compounds. (3-(4-fluorophenyl)thiophene (FPT), 3-(4-nitrophenyl)



Table 1 Optimized geometrical parameters of the title compounds, bond lengths (Å) and bond angles (°)

Parameter FPT NPT CPT

6-31G(d) 6-311++G(d,p) 6-31G(d) 6-311++G(d,p) 6-31G(d) 6-311++G(d,p)

S1-C2 1.732 1.730 1.728 1.725 1.728 1.726

C2-C3 1.376 1.374 1.378 1.376 1.378 1.375

C3-C4 1.439 1.436 1.439 1.436 1.439 1.436

C4-C5 1.364 1.363 1.364 1.362 1.364 1.363

C5-S1 1.735 1.732 1.736 1.732 1.735 1.732

C3-C6 1.478 1.478 1.475 1.474 1.475 1.475

C6-C7 1.406 1.403 1.408 1.406 1.407 1.405

C7-C8 1.393 1.392 1.389 1.387 1.389 1.387

C8-C9 1.390 1.386 1.394 1.392 1.405 1.403

C9-C10 1.390 1.385 1.394 1.392 1.405 1.402

C10-C11 1.393 1.392 1.390 1.388 1.389 1.388

C11-C6 1.406 1.403 1.408 1.405 1.407 1.404

C9-F 1.350 1.356 — — — —

C9-N — — 1.467 1.474 — —

N-O1 — — 1.232 1.226 — —

N-O2 — — 1.232 1.226 — —

C9-C — — — — 1.433 1.430

C≡ N — — — — 1.164 1.156

C5-S1-C2 91.36 91.39 91.44 91.46 91.42 91.45

S1-C2-C3 112.44 112.36 112.38 112.33 112.38 112.32

C2-C3-C4 111.23 111.35 111.33 111.40 111.31 111.40

C3-C4-C5 113.45 113.35. 113.29 113.23 113.32 113.25

C4-C5-S1 111.52 111.55 111.56 111.59 111.56 111.58

C2-C3-C6 124.53 124.43 124.32 124.27 124.35 124.29

C4-C3-C6 124.23 124.22 124.35 124.33 124.33 124.31

C7-C6-C3 121.16 121.11 121.09 121.04 121.14 121.11

C11-C6-C3 120.82 120.81 120.70 120.70 120.78 120.79

C6-C7-C8 121.36 121.11 121.25 121.22 121.24 121.21

C7-C8-C9 118.76 118.59 118.86 118.87 120.04 120.05

C8-C9-C10 121.74 122.07 121.58 121.58 119.37 119.38

C9-C10-C11 118.76 118.59 118.86 118.88 120.05 120.06

C10-C11-C6 121.35 121.33 121.23 121.21 121.22 121.20

C11-C6-C7 118.02 118.08 118.21 118.25 118.08 118.10

C8-C9-F 119.12 118.96 — — — —

C10-C9-F 119.14 118.97 — — — —

C8-C9-N — — 119.20 119.21 — —

C10-C9-N — — 119.21 119.21 — —

C9-N-O1 — — 117.72 117.73 — —

C9-N-O2 — — 117.73 117.73 — —

C8-C9-C — — — — 120.31 120.31

C10-C9-C — — — — 120.32 120.32

C9-C-N — — — — 179.98 179.98

C2-C3-C6-C7 32.50 35.73 29.50 31.55 30.06 32.59
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Table 2 Calculated vibrational frequencies (cm−1) for FPT

Assignments FPT

6-31G(d) 6-311++G(d.p)

ν(C-H)th 3273(0.96) 3246(0.67)

ν(C-H)th 3269(1.24) 3242(1.02)

ν(C-H)th, ν(C-H)ph 3226(5.40) 3203(2.29)

ν(C-H)th, ν(C-H)ph 3224(5.98) 3201(2.84)

ν(C-H)th, ν(C-H)ph 3223(4.14) 3200(2.26)

ν(C-H)th, ν(C-H)ph 3202(6.33) 3180(3.54)

ν(C-H)ph 3201(9.83) 3179(7.59)

ν(C-C)ph 1669(25.52) 1645(20.75)

ν(C-C)ph 1641(3.02) 1627(3.30)

ν(C-C)ph, ν(C-C)th 1595(16.96) 1573(20.98)

ν(C-C)ph, ν(C-C)th 1560(122.96) 1535(130.98)

ν(C-C)ph, ν(C-C)th 1475(2.83) 1451(2.32)

ν(C-C)ph, ν(C-C)th 1458(3.50) 1439(3.37)

ν(C-C)ph, ν(C-C)th 1406(11.87) 1388(10.73)

ν(C-C)ph, δ(C-H)ip-th 1339(0.63) 1323(2.50)

δ(C-H)ip-th, δ(C-H)ip-ph 1328(2.20) 1314(1.01)

ν(C-C), ν(C-F), δ(C-H)ip-th 1290(41.22) 1275(2.06)

ν(C-F), δ(C-H)ip-th, δ(C-H)ip-ph 1283(81.11) 1241(138.39)

δ(C-H)ip-th, δ(C-H)ip-ph 1232(9.39) 1217(7.52)

δ(C-H)ip-ph 1194(17.64) 1179(34.33)

δ(C-H)ip-ph, δ(C-H)ip-th 1130(8.61) 1119(8,16)

δ(C-H)ip-th, δ(C-H)ip-ph 1122(2.00) 1109(3.73)

δ(C-H)ip-th, δ(C-H)ip-ph 1065(1.07) 1057(1.21)

α(ring)ph, δ(C-H)ip-ph 1034(2.00) 1030(4.03)

δ(C-H)opp-ph 959(0.23) 973(0.25)

δ(C-H)opp-ph 953(0.03) 956(0.09)

α(ring)th, δ(C-H)opp-th, α(ring)ph 911(8.64) 909(9.70)

δ(C-H)opp-th 895(0.72) 895(0.60)

δ(C-H)opp-ph, ν(C-S), δ(C-H)opp-th 871(26.90) 867(25.59)

δ(C-H)opp-ph, δ(C-H)opp-th 849(44.62) 851(58.48)

α(ring)th, δ(C-H)opp-ph, α(ring)ph 844(1.46) 835(4.97)

δ(C-H)opp-ph 831(0.41) 826(0.16)

α(ring)th, α(ring)ph, δ(C-H)opp-ph,
δ(C-H)opp-th

804(7.14) 797(13.20)

δ(C-H)opp-ph, δ(C-H)opp-th 793(84.60) 788(82.73)

δ(C-H)opp-ph, δ(C-H)opp-th, Φ(ring)ph 720(3.48) 727(7.80)

δ(C-H)opp-ph 685(1.49) 687(3.06)

δ(C-H)opp-ph, Φ(ring)ph, Φ(ring)th 661(5.22) 659(7.52)

Φ(ring)ph, Φ(ring)th 645(3.39) 644(3.97)

Φ(ring)ph, Φ(ring)th 641(1.76) 636(4.69)

α(ring)th, α(ring)ph 573(19.72) 573(23.87)

Φ(ring)ph, Φ(ring)th, δ(C-H)opp-ph 535(8.08) 532(18.09)

Table 2 Calculated vibrational frequencies (cm−1) for FPT
(Continued)

Φ(ring)th 467(1.03) 468(0.97)

Φ(ring)ph, Φ(ring)th 444(0.42) 442(0.69)

Φ(ring)ph 426(0.09) 426(0.11)

The numbers in the parentheses correspond to the IR intensities. α: planar ring
deformation, Φ: non-planar deformation, ν: stretching, δ: bending, ph: benzene,
th: thiophene.
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type (Coffman et al. 1996). The bond angles in the benzene
rings (120°) have the value between 118°-121° for all the
compounds, which may be result from the π delocalization
through the whole molecules. For CPT, the value of bond
angle C9-C-N is 179.98°.
In all cases, the atoms in the R group are coplanar with

the corresponding benzene ring, which indicates that
there are only two planar (thiophene ring and benzene
ring) within each of the title compounds. The values of
dihedral angles between the thiophene and benzene
rings are 29.50°-35.73°. The angles calculated at B3LYP/
6-311++G(d,p) level have higher values than that calcu-
lated at B3LYP/6-31G(d) level. Nonetheless, the two cal-
culated levels represent the same tendency for the three
compounds. FPT has the biggest values of dihedral angle
while NPT has the smallest, which indicates that NPT has
the highest π-conjugated structure (Haddon 2001).

3.2 Vibrational frequency
Vibrational frequencies were calculated by B3LYP/6-31G
(d) and B3LYP/6-311++G(d,p) methods. Tables 2, 3, 4
presents the calculated vibrational frequencies over the
range 4000–400 cm−1 of the title compounds studied. In-
clusion of electron correlation in density functional theory
to a certain extent makes the frequency values closer to
the experimental vibrational frequencies. According to the
data in Tables 2, 3, 4, the frequencies values calculated
with 6-311++G(d,p) basis set are smaller than that with 6-
31G(d) basis set. The following discussions are being done
with the results at DFT level calculation with 6-311++G
(d,p) basis set for a higher accuracy. Calculated IR inten-
sities help us to distinguish and more precisely assign
those fundamentals which are close in frequency (Li et al.
2011). The theoretical FT-IR spectra calculated at B3LYP/
6-31G(d) and B3LYP/6-311++G(d,p) levels are shown in
Figures 2 and 3, respectively.

3.2.1 C-H vibrations
The existence of one or more aromatic rings in a molecule
is normally determined from the C-H and C-C = C ring
related vibrations. The C-H stretching occurs above
3000 cm−1 and is typically exhibited as a multiplicity of
weak to moderate bands (Hunt et al. 1987). In the present
theoretical study, the FTIR band in the region 3300–



Table 3 Calculated vibrational frequencies (cm−1) for NPT

Assignments NPT

6-31G(d) 6-311++G(d.p)

ν(C-H)th 3275(0.75) 3248(0.80)

ν(C-H)th 3271(0.68) 3243(1.01)

ν(C-H)ph 3252(1.02) 3222(3.22)

ν(C-H)ph 3251(0.48) 3221(0.75)

ν(C-H)th, ν(C-H)ph 3230(2.93) 3207(1.42)

ν(C-H)th, ν(C-H)ph 3212(5.72) 3190(3.63)

ν(C-H)ph 3210(6.44) 3188(3.92)

ν(C-C)ph, ν(N-O) 1665(105.58) 1637(68.31)

ν(C-C)ph 1655(96.36) 1635(101.67)

ν(C-C)ph, ν(C-C)th, ν(N-O) 1611(96.07) 1574(144.85)

ν(C-C)th 1588(20.32) 1564(88.76)

ν(C-C)ph, ν(C-C)th 1541(13.83) 1523(13.80)

ν(C-C)ph, ν(C-C)th 1475(10.72) 1453(7.25)

ν(C-C)ph, ν(C-C)th 1458(4.38) 1440(3.14)

ν(C-C)ph, ν(C-C)th 1407(5.29) 1389(6.69)

ν(C-N) 1393(554.93) 1363(593.08)

ν(C-C)ph 1363(7.22) 1346(10.99)

δ(C-H)ip-ph 1329(2.98) 1316(5.55)

δ(C-H)ip-th, δ(C-H)ip-ph 1291(8.10) 1279(7.66)

δ(C-H)ip-th 1236(9.45) 1221(7.50)

δ(C-H)ip-ph 1218(5.70) 1206(6.98)

δ(C-H)ip-ph 1140(7.72) 1131(8.01)

δ(C-H)ip-th, δ(C-H)ip-ph 1135(64.27) 1121(78.97)

δ(C-H)ip-th 1124(10.75) 1110(18.81)

α(ring)th, δ(C-H)ip-th, δ(C-H)ip-ph 1065(1.34) 1056(1.01)

α(ring)ph 1033(0.61) 1029(1.26)

δ(C-H)opp-ph 993(0.66) 998(0.08)

δ(C-H)opp-ph 983(0.09) 987(0.99)

α(ring)th 912(0.88) 910(1.42)

δ(C-H)opp-ph, δ(C-H)opp-th 898(1.60) 898(1.33)

δ(C-H)opp-ph, δ(C-H)opp-th, 884(13.61) 879(13.51)

δ(C-H)opp-ph, ν(C-S), δ(C-H)opp-th 870(15.92) 869(44.51)

α(ring)th, α(ring)ph, δ(C-H)opp-ph,
δ(C-H)opp-th, δ(N-O)

862(84.49) 861(72.40)

δ(C-H)opp-ph 851(4.91) 847(1.69)

δ(C-H)opp-ph, α(ring)th 817(4.24) 812(1.70)

δ(C-H)opp-th, δ(C-H)opp-ph, Φ(ring)ph,
Φ(ring)th

802(52.29) 793(68.72)

δ(C-H)opp-th, δ(C-H)opp-ph, Φ(ring)ph,
δ(C-N)

760(51.52) 745(35.05)

α(ring)th, α(ring)ph 716(0.55) 717(0.25)

Φ(ring)ph, δ(C-H)opp-th 709(6.11) 703(7.85)

δ(C-H)opp-th 691(3.68) 691(6.69)

Table 3 Calculated vibrational frequencies (cm−1) for NPT
(Continued)

Φ(ring)ph, Φ(ring)th, δ(C-H)opp-th 655(4.22) 652(4.30)

Φ(ring)ph, Φ(ring)th, δ(C-H)opp-th 639(2.62) 634(5.91)

Φ(ring)ph, Φ(ring)th 630(0.14) 630(0.12)

δ(C-N) 540(1.26) 538(1.55)

Φ(ring)ph 512(3/56) 505(8.19)

ν(ph-NO2) 477(6.27) 473(3.64)

Φ(ring)th 462(2.64) 463(3.55)

Φ(ring)ph 423(0.05) 420(0.08)

Φ(ring)ph, Φ(ring)th 410(0.26) 406(0.20)

The numbers in the parentheses correspond to the IR intensities. α: planar ring
deformation, Φ: non-planar deformation, ν: stretching, δ: bending, ph:
benzene, th: thiophene.
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3100 cm−1 are assigned to aryl C-H stretching vibrations.
The C-H in plane bending vibration usually occurs in the
region 1400–900 cm−1 and is very useful for characteri-
zation purpose (Castillo et al. 2012). For FPT, the cal-
culated frequencies 1323, 1314, 1275, 1241, 1217,
1179, 1119, 1057, 1030 cm−1 at B3LYP/6-311++G(d,p)
are assigned to C-H in plane bending vibrations, which
has similar results for NPT and CPT. The C-H out of
plane deformations are observed between 1000–500 cm−1

for the three title compounds.
3.2.2 C-S vibrations
In our present study, the C-S stretching vibrations are
observed at 867 cm−1 for FPT, 869 cm−1 for NPT and
873 cm−1 for CPT, respectively.
3.2.3 C = C stretching
The ring carbon-carbon stretching vibrations occur in
the region 1650–1400 cm−1. For aromatic six-membered
rings, there are two of three bands in this region due to
skeletal vibrations, the strongest usually being at about
1500 cm−1 (Li et al. 2011). The aromatic C = C stretching
is observed at 1645, 1573, 1535 cm−1 for FPT while the
strongest peak is observed at 1535 cm−1. The strongest
peaks are observed at 1574 cm−1 and 1647 cm−1 for NPT
and CPT, respectively, which may be due to the electron-
withdrawing effect by the nitro and cyano groups.
3.2.4 Ring vibrations
In benzene, six ring deformation frequencies are observed.
Three arise from in-plane bending vibrations, correspond-
ing to 1000–600 cm−1 mode and the remaining three are
derived from the out-of-plane bending vibrations, corre-
sponding to 700–400 cm−1 mode of vibrations (Li et al.
2011). For FPT, the α(ring) vibrations are observed at 909,



Table 4 Calculated vibrational frequencies (cm−1) for CPT

Assignments CPT

6-31G(d) 6-311++G(d.p)

ν(C-H)th 3275(0.77) 3247(0.75)

ν(C-H)th 3270(0.85) 3242(1.02)

ν(C-H)ph, ν(C-H)th 3229(3.65) 3206(1.69)

ν(C-H)ph, ν(C-H)th 3223(0.21) 3199(0.08)

ν(C-H)th, ν(C-H)ph 3221(9.86) 3198(5.73)

ν(C-H)th, ν(C-H)ph 3205(4.14) 3182(2.33)

ν(C-H)ph 3203(7.33) 3181(5.73)

ν(C≡ N) 2345(57.40) 2328(79.30)

ν(C-C)ph 1665(57.84) 1647(60.69)

ν(C-C)ph, ν(C-C)th 1608(5.00) 1590(3.95)

ν(C-C)ph, ν(C-C)th 1586(13.12) 1567(18.50)

ν(C-C)ph, ν(C-C)th 1553(19.22) 1534(17.38)

ν(C-C)ph, ν(C-C)th 1475(12.16) 1452(8.34)

ν(C-C)ph, ν(C-C)th 1458(7.78) 1440(7.27)

ν(C-C)ph, ν(C-C)th 1409(8.58) 1392(7.99)

δ(C-H)ip-ph 1344(1.37) 1332(1.43)

ν(C-C)ph, δ(C-H)ip-th 1330(2.26) 1309(3.74)

ν(Cph-Cth), δ(C-H)ip-th, δ(C-H)ip-ph 1292(3.60) 1278(2.78)

δ(C-H)ip-th, δ(C-H)ip-ph, ν(Cph-CN) 1240(1.60) 1229(0.75)

δ(C-H)ip-th, δ(C-H)ip-ph 1235(7.16) 1220(6.33)

δ(C-H)ip-ph 1213(7.31) 1202(8.18)

δ(C-H)ip-ph 1149(3.00) 1138(3.87)

δ(C-H)ip-th 1124(4.56) 1111(5.71)

α(ring)th, δ(C-H)ip-th, δ(C-H)ip-ph 1066(1.07) 1057(1.13)

α(ring)ph, δ(C-H)ip-th, δ(C-H)ip-ph 1037(1.17) 1033(1.85)

δ(C-H)opp-ph 979(0.04) 989(0.09)

δ(C-H)opp-ph 972(0.11) 977(0.17)

α(ringethth 911(5.98) 909(7.11)

δ(C-H)opp-th 898(0.92) 898(0.89)

δ(C-H)opp-ph, ν(C-S), δ(C-H)opp-th 877(26.43) 873(24.47)

δ(C-H)opp-ph, δ(C-H)opp-th, 859(32.47) 857(45.62)

δ(C-H)opp-ph 854(4.92) 849(2.68)

α(ring)th, α(ring)ph, δ(C-H)opp-ph,
δ(C-H)opp-th

827(1.07) 820(0.99)

δ(C-H)opp-ph, δ(C-H)opp-th 797(75.99) 792(79.51)

α(ring)th, α(ring)ph, δ(C-H)opp-th 773(1.57) 771(1.11)

δ(C-H)opp-th, Φ(ring)ph 742(10.37) 742(12.43)

δ(C-H)opp-th 690(2.66) 691(4.50)

Φ(ring)ph, Φ(ring)th, δ(C-H)opp-th 666(2.98) 665(4.18)

Φ(ring)ph, Φ(ring)th, δ(C-H)opp-th,
δ(C-H)opp-ph

647(2.79) 640(4.16)

Φ(ring)th 638(0.22) 637(1.93)

Φ(ring)ph, δ(C-H)opp-ph, δ(Cph-CN) 574(15.24) 576(15.05)

Φ(ring)ph, δ(C-H)opp-ph, δ(Cph-CN) 561(1.38) 569(7.44)

Table 4 Calculated vibrational frequencies (cm−1) for CPT
(Continued)

α(ring)ph, α(ring)th 532(4.37) 532(4.04)

Φ(ring)th, Φ(ring)ph 484(0.05) 485(0.59)

Φ(ring)th 460(1.73) 461(1.83)

Φ(ring)ph 414(0.01) 412(0.01)

The numbers in the parentheses correspond to the IR intensities. α: planar ring
deformation, Φ: non-planar deformation, ν: stretching, δ: bending, ph: benzene,
th: thiophene.
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835, 797, 573 cm−1 and Φ(ring) vibrations at 644, 636,
532 cm−1.

3.25 C-N vibrations
For NPT, the strong peak at 1363 cm−1 is assigned to
the Cph-N single-bonded stretching. For CPT, the C ≡N
stretching is observed at 2328 cm−1.

3.2.6 N-O vibrations
The N-O stretching vibration is observed at 1637 and
1574 cm−1 for NPT.

3.3 13C and 1H NMR studies
The calculated values of 13C and 1H chemical shifts by
B3LYP/6-311++G(d,p) method in the gas phase are sum-
marized in Tables 5 and 6.
(Li and Zhang 2013) calculated the 13C and 1H chemical

shifts of 2-dicyanovinyl-5-(4- methoxyphenyl) thiophene
in the gas phase by B3LYP/6-311++G(d,p) and B3LYP/
6-311++G(2d,2p) method and the calculated results are
good agreement with the experimental ones (Li and
Zhang 2013). In order to have a comparison, we extend
our study by employing B3LYP/6-311++G(2d,2p) method
to calculated the 13C and 1H chemical shifts in the gas
phase. It has been proved that the chemical shifts calcu-
lated by B3LYP/6-311++G(2d,2p) method are closer to
the experimental values than those calculated by B3LYP/
6-311++G(d,p) method (Li et al. 2011). It is noted that all
the 13C and 1H chemical shifts are in there normal
values for all the compounds. The 1H chemical shifts
calculated by B3LYP/6-311++G(2d,2p) method have
higher values than those calculated by B3LYP/6-311+
+G(d,p) method in the present study. For the thiophene
ring, C3 has the highest chemical shifts in each com-
pound, which may due to the substituting effects of the
benzene moiety. The C9 in the benzene rings have the
highest value of chemical shifts for FPT and NPT while
that of CPT has the smallest, indicating the effect of the
substituted groups at C9.

3.4 Mulliken charges
The atomic charge in the molecules is fundamental to
chemistry. Mulliken atomic charges calculated at the



Figure 2 The theoretically FT-IR spectrum of the title compounds by B3LYP/6-31G(d) methods.
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B3LYP/6-311++G(d,p) level are shown in Figure 4. It is
noted from Figure 5 that the charge distribution of the
aromatic skeleton is related with the substituted groups
at C9. For example, the charge of C9 atom is −0.796 for
FPT, −0.170 for NPT, and 2.113 for CPT. The sum charges
of the substituted groups are −0.173 for FPT, −0.211 for
NPT, and −1.82 for CPT, which indicates that cyano group
has the highest electron-withdrawing effect. The charge
values on S atom decrease from −0.439 to −0.475 from
FPT to CPT. All the hydrogen atoms have a net positive
charge.
Particularly, the charges on H2 and H5 atoms exhibit

large positive values (0.275 and 0.265 for FPT, 0.277
and 0.273 for NPT, 0.279 and 0.273 for CPT). The
presence of large negative charge on S atom and
positive charge on H2 or H5 atom may suggest the
formation of intramolecular interactions in the solid
states.

3.5 Electronic spectra
To the best of our knowledge, no experimental UV–vis
spectra of the title compounds is reported. Figure 5 dis-
play the calculated spectra of the title compounds at
B3LYP/6-311++G(d,p) level. Tables 7, 8, 9 list the ex-
citation energies of the Frontier orbitals and oscillator
strengths of the optimized ground state geometries. At
the B3LYP/6-311++G(d,p) level of theory the excitation
bands of the title compounds are composed of mixed
HOMO-n→ LUMO+m excitations. Figure 6 compares
contour plots of three highest occupied and three lowest



Figure 3 The theoretically FT-IR spectrum of the title compounds by B3LYP/6-311++G(d,p) methods.

Table 5 Calculated δ(cal) 13C chemical shifts of the title compounds

C FPT NPT CPT

6-311++G(d,p) 6-311++G(2d,2p) 6-311++G(d,p) 6-311++G(2d,2p) 6-311++G(d,p) 6-311++G(2d,2p)

2 130.4 129.8 133.9 133.0 132.9 132.2

3 148.1 148.9 146.7 147.6 147.1 148.0

4 130.5 131.1 130.1 130.7 130.0 130.6

5 136.2 136.1 137.2 137.3 137.1 137.1

6 139.4 139.7 149.0 149.4 146.4 146.9

7 133.2 133.2 130.6 130.8 131.2 131.1

8 120.1 120.2 129.6 130.3 138.9 138.8

9 171.1 171.6 153.1 153.6 115.9 116.4

10 119.8 119.9 129.6 130.1 138.8 138.7

11 133.0 133.0 130.5 130.8 131.2 131.1

12a — — — 122.1 122.9
aC atom in cyano group for CPT.
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Table 6 Calculated δ(cal) 13H chemical shifts of the title compounds

Ha FPT NPT CPT

6-311++G(d,p) 6-311++G(2d,2p) 6-311++G(d,p) 6-311++G(2d,2p) 6-311++G(d,p) 6-311++G(2d,2p)

2 7.29 7.63 7.57 7.92 7.50 7.85

4 7.30 7.56 7.38 7.67 7.40 7.66

5 7.27 7.68 7.36 7.78 7.33 7.75

7 7.62 7.90 7.67 8.00 7.69 8.00

8 7.19 7.48 8.48 8.94 7.76 8.06

10 7.19 7.49 8.49 8.94 7.77 8.08

11 7.54 7.84 7.57 7.93 7.62 7.94
aThe number of H are according to the number of the bonded carbon.
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unoccupied molecular orbitals (H-2 to H, L to L + 2;
isovalue 0.02 e/a.u3) that give rise to the transitions.

(4-fluorophenyl)thiophene (FPT) The S1-S5 bands of
FPT are calculated at 265, 257, 243, 231, 229 nm. The
Figure 4 Atomic charges for optimized geometries of the title compo
nature of the strongest absorption band 257 nm (S0→ S2)
is dominated by excitations from HOMO-2→ LUMO+ 0,
HOMO-0→ LUMO+ 0, and HOMO-0→ LUMO+ 1,
which consist of n→ π* and π→ π* transitions (see Fron-
tier orbitals in Figure 6). The oscillator strength of S0→
unds at B3LYP/6-311++G(d,p) level.



Figure 5 Predicted UV–vis spectra of the title compounds at B3LYP/6-311++G(d,p) level.
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S1 band is f = 0.0383, and the major excitation is HOMO-
0→ LUMO+ 1(62%), which is assigned to the n→ π*
transition. The HOMO-LUMO gap is calculated to be
5.14 eV.

(4-nitrophenyl)thiophene (NPT) The S1-S5 bands of
NPT are calculated at 344, 329, 310, 290, 288 nm, which
shows red-shifted character compared with FPT. The na-
ture of the strongest absorption band 344 nm (S0→ S1) is
dominated by excitations from HOMO-0→ LUMO+ 0
(94%), which consist of π→ π* transitions (see Frontier
orbitals in Figure 6). The HOMO-LUMO gap is calculated
to be 3.961 eV, which is lower than that of FPT. It is re-
ported that the molecules with nitro group can lower the
band gaps, which has potential use in photovoltaic cells
(Mikroyannidis et al. 2009).

(4-cyanophenyl)thiophene (CPT)) The S1-S5 bands of
CPT are calculated at 287, 268, 265, 237, 232 nm, which
Table 7 B3LYP/6-311++G(d,p) wavelength, excitation energie

State FPT

λ (nm) eV f

S1 265.61 4.668 0.03

S2 257.41 4.817 0.26

S3 243.84 5.985 0.00

S4 231.98 5.345 0.00

S5 229.23 5.409 0.01
shows red-shifted character compared with FPT, and
blue-shift compared with NPT. The nature of the stron-
gest absorption band 287 nm (S0→ S1) is dominated by
excitations from HOMO-0→ LUMO+ 0(96%), which con-
sist of n→ π* and π→ π* transitions (see Frontier orbitals
in Figure 6). The HOMO-LUMO gap is calculated to be
4.651 eV, which has the intermediate value among the
three compounds.

4. Conclusions
In the present work, the optimized molecular structures,
vibrational frequencies, NMR chemical shifts, and elec-
tronic properties of the three title compounds have been
calculated by using B3LYP/6-31G(d), B3LYP/6-311++G
(d,p) and TD-B3LYP/6-311++G(d,p) methods. The opti-
mized geometries results show that FPT has the biggest
values of dihedral angle while NPT has the smallest,
which indicates that NPT has the highest π-conjugated
structure. The vibrational frequencies values calculated
s, and the oscillator strengths for FPT

% contribution

83 H-2→ L + 0(7%), H-0→ L + 0(27%), H-0→ L + 1(62%)

03 H-2→ L + 0(3%), H-0→ L + 0(68%), H-0→ L + 1(24%)

02 H-1→ L + 0(50%), H-0→ L + 2(45%)

70 H-1→ L + 0(5%), H-0→ L + 2(3%), H-0→ L + 3(78%)

H-0→ L + 4(8%)

04 H-2→ L + 0(8%), H-1→ L + 1(81%), H-0→ L + 3(4%)



Table 8 B3LYP/6-311++G(d,p) wavelength, excitation energies, and the oscillator strengths for NPT

State NPT

λ (nm) eV f % contribution

S1 344.39 3.600 0.3120 H-3→ L + 0(2%), H-0→ L + 0(96%)

S2 329.99 3.757 0.0085 H-3→ L + 0(91%), H-3→ L + 1(2%), H-0→ L + 0(2%)

S3 310.18 3.997 0.0793 H-1→ L + 0(98%)

S4 290.03 4.275 0.0077 H-5→ L + 0(29%), H-2→ L + 0(61%), H-0→ L + 1(2%)

H-0→ L + 2(4%)

S5 288.72 4.294 0.0042 H-5→ L + 0(66%), H-2→ L + 0(27%)

Table 9 B3LYP/6-311++G(d,p) wavelength, excitation energies, and the oscillator strengths for CPT

State CPT

λ (nm) eV f % contribution

S1 287.11 4.318 0.4520 H-0→ L + 0(94%)

S2 268.77 4.613 0.0590 H-2→ L + 0(10%), H-1→ L + 0(55%), H-0→ L + 1(33%)

S3 265.04 4.678 0.0735 H-2→ L + 0(20%), H-1→ L + 0(38%), H-0→ L + 1(34%)

H-0→ L + 2(6%)

S4 237.49 5.220 0.0137 H-3→ L + 0(5%), H-3→ L + 1(2%), H-2→ L + 0(21%)

H-1→ L + 0(3%), H-1→ L + 1(3%), H-1→ L + 2(2%)

H-0→ L + 1(20%), H-0→ L + 2(40%)

S5 232.34 5.34 0.0512 H-3→ L + 0(6%), H-3→ L + 1(4%), H-2→ L + 0(13%)

H-1→ L + 1(40%), H-0→ L + 1(5%), H-0→ L + 2(29%)

Figure 6 Frontier molecular orbitals of FPT, NPT and CPT calculated at B3LYP/6-311++G(d,p)//TD- B3LYP/6-311++G(d,p).
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with 6-311++G(d,p) basis set are smaller than that with
6-31G(d) basis set for all the compounds. For NPT, the
strong peak at 1363 cm−1 is assigned to the Cph-N
single-bonded stretching, and the N-O stretching vibra-
tion is observed at 1637 and 1574 cm−1. For CPT, the
C ≡N stretching is observed at 2328 cm−1. The C9 in
the benzene rings have the highest value of chemical
shifts for FPT and NPT while that of CPT has the smal-
lest, indicating the effect of the substituted groups at C9.
CPT shows red-shifted character compared with FPT,
and blue-shift compared with NPT in the TD-DFT cal-
culations. In a word, the type of substituted groups at
the C9 atom have significant effect on the properties for
the 3-(4-phenyl)thiophene derivatives. Poly(3-phenylthio-
phene) has been used reported for used in supercapacitors.
The polymerization of the three title compounds are being
studied by our group. We believe that the three title com-
pounds will show good performance in supercapacitors.
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