1,349 research outputs found

    Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy

    Get PDF
    INTRODUCTION: Abnormal biomechanics plays a role in intervertebral disc degeneration. Adipose-derived stromal cells (ADSCs) have been implicated in disc integrity; however, their role in the setting of mechanical stimuli upon the disc's nucleus pulposus (NP) remains unknown. As such, the present study aimed to evaluate the influence of ADSCs upon NP cells in compressive load culture. METHODS: Human NP cells were cultured in compressive load at 3.0MPa for 48 hours with or without ADSCs co-culture (the ratio was 50:50). We used flow cytometry, live/dead staining and scanning electron microscopy (SEM) to evaluate cell death, and determined the expression of specific apoptotic pathways by characterizing the expression of activated caspases-3, -8 and -9. We further used real-time (RT-) PCR and immunostaining to determine the expression of the extracellular matrix (ECM), mediators of matrix degradation (e.g. MMPs, TIMPs and ADAMTSs), pro-inflammatory factors and NP cell phenotype markers. RESULTS: ADSCs inhibited human NP cell apoptosis via suppression of activated caspase-9 and caspase-3. Furthermore, ADSCs protected NP cells from the degradative effects of compressive load by significantly up-regulating the expression of ECM genes (SOX9, COL2A1 and ACAN), tissue inhibitors of metalloproteinases (TIMPs) genes (TIMP-1 and TIMP-2) and cytokeratin 8 (CK8) protein expression. Alternatively, ADSCs showed protective effect by inhibiting compressive load mediated increase of matrix metalloproteinases (MMPs; MMP-3 and MMP-13), disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs; ADAMTS-1 and 5), and pro-inflammatory factors (IL-1beta, IL-6, TGF-beta1 and TNF-alpha). CONCLUSIONS: Our study is the first in vitro study assessing the impact of ADSCs on NP cells in an un-physiological mechanical stimulation culture environment. Our study noted that ADSCs protect compressive load induced NP cell death and degradation by inhibition of activated caspase-9 and -3 activity; regulating ECM and modulator genes, suppressing pro-inflammatory factors and preserving CK8. Consequently, the protective impact of ADSCs found in this study provides an essential understanding and expands our knowledge as to the utility of ADSCs therapy for intervertebral disc regeneration.published_or_final_versio

    Immune cascades in human intervertebral disc: the pros and cons

    Get PDF
    The unique structural hallmark of the intervertebral disc has made its central composition, the nucleus pulposus (NP), excluded from the immunologic tolerance. Consequently, the intervertebral disc is identified as an immune-privileged organ. Traditionally, local detrimental immune activities caused by NP at the lesion sites of the disc are noted as a significant factor contributing to disc degeneration. However, given the beneficial activities of immune cells in other immune-privileged sites on basis of current evidence, the degenerate disc might need the assistance of a subpopulation of immune cells to restore its structure and lessen inflammation. In addition, the beneficial impact of immune cells can be seen in the absorption of the herniated NP, which is an important factor causes the mechanical compression of nerve roots. Consequently, a modulated immune network in degenerate disc is essential for the restoration of this immune-privileged organ. Until now, the understandings of immune response in disc degeneration still rest on the harmful aspect. Further studies are needed to explore its beneficial influence. Accordingly, there are no absolutely the pros and cons in terms of immune reactions caused by NP.published_or_final_versio

    深圳市1km高分辨率厘米级高精度大地水准面的确定

    Get PDF
    Author name used in this publication: 宁津生Author name used in this publication: 罗志才Author name used in this publication: 杨沾吉Author name used in this publication: 陈永奇Author name used in this publication: 张天纪Title in Traditional Chinese: 深圳市1km高分辨率厘米級高精度大地水準面的確定Journal title in Traditional Chinese: 測繪通報2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    'Spring-back' closure associated with open-door cervical laminoplasty

    Get PDF
    BACKGROUND CONTEXT: Spring-back complication after open-door laminoplasty as described by Hirabayashi is a well-known risk, but its definition, incidence, and associated neurologic outcome remain unclear. OBJECTIVE: To investigate the incidence and the neurologic consequence of spring-back closure after open-door laminoplasty. STUDY DESIGN: A retrospective radiographic and clinical review. OUTCOME MEASURES: Lateral cervical spine X-rays were evaluated. Anteroposterior diameters (APD) of the vertebral canal of C3-C7 were measured. Spring-back was defined as loss of APD on follow-up in comparison to immediate postoperative canal expansion. The loss of the end-on lamina silhouette with consequent reappearance of the lateral profile of the spinous processes was also assessed to verify the presence of spring-back. Spring-back closure was classified based on whether the collapse was total or partial, and whether all the operated levels or only a subset had collapsed (ie, complete vs. partial closure, segmental closure vs. total-construct closure). Neurologic status was documented using the Japanese Orthopaedic Association (JOA) score. METHODS: Thirty consecutive patients who underwent open-door laminoplasty from 1995 to 2005 at a single institution with a minimum follow-up of 2 years were assessed. They were all operated on using the classic Hirabayashi technique. Radiographic outcomes were assessed independently by two individuals. RESULTS: Sixteen men and 14 women with an average follow-up of 5 years (range, 2-12 years) were included. Of these patients, 24 had cervical spondylotic myelopathy and six had ossification of the posterior longitudinal ligament. Spring-back closure was found in three patients (10%) and 7 of 117 laminae (6%) within 6 months of the operation, which was further confirmed by computed tomography and magnetic resonance imaging. All spring-back closures were partial segmental closures. Gender and age were not significant factors related to spring back (p>.05). The mean JOA score on follow-up was 12.5, with a recovery rate of 40%. All patients with spring back and available JOA data exhibited postoperative neurologic deterioration. Of the three patients with spring back, two patients underwent revision surgery, whereas one declined. CONCLUSIONS: Spring-back closure occurred in 10% of our patients at or before 6 months after surgery. The incidence of spring-back by level (ie, 117 laminae) was 6%, mainly occurring at the lower cervical spine. All spring-back closures were partial segmental closures, most commonly involving C5 and C6. Postoperative neurologic deficit was associated with spring-back closure; therefore, surgeons should adopt preemptive surgical measures to prevent the occurrence of such a complication.postprin

    FasL expression on human nucleus pulposus cells contributes to the immune privilege of intervertebral disc by interacting with immunocytes

    Get PDF
    The mechanisms of immune privilege in human nucleus pulposus (NP) remain unclear. Accumulating evidence indicates that Fas ligand (FasL) might play an important role in the immune privilege of the disc. We aimed for addressing the role of FasL expression in human intervertebral disc degeneration (IDD) and immune privilege in terms of the interaction between NP cells and immunocytes via the FasL-Fas machinery. We collected NP specimens from 20 patients with IDD as degenerative group and 8 normal cadaveric donors as control. FasL expression was detected by qRT-PCR, western blotting and flow cytometry (FCM). We also collected macrophages and CD8(+) T cells from the peripheral blood of patients with IDD for co-cultures with NP cells. And macrophages and CD8(+) T cells were harvested for apoptosis analysis by FCM after 2 days of co-cultures. We found that FasL expression in mRNA, protein and cellular resolutions demonstrated a significant decrease in degenerative group compared with normal control (p<0.05). FCM analysis found that human NP cells with increased FasL expression resulted in significantly increased apoptosis ratio of macrophages and CD8(+) T cells. Our study demonstrated that FasL expression tends to decrease in degenerated discs and FasL plays an important role in human disc immune privilege, which might provide a novel target for the treatment strategies for IDD.published_or_final_versio

    Down-regulated CK8 expression in human intervertebral disc degeneration

    Get PDF
    As an intermediate filament protein, cytokeratin 8 (CK8) exerts multiple cellular functions. Moreover, it has been identified as a marker of notochord cells, which play essential roles in human nucleus pulposus (NP). However, the distribution of CK8 positive cells in human NP and their relationship with intervertebral disc degeneration (IDD) have not been clarified until now. Here, we found the percentage of CK8 positive cells in IDD (25.7+/-4.14%) was significantly lower than that in normal and scoliosis NP (51.9+/-9.73% and 47.8+/-5.51%, respectively, p<0.05). Western blotting and qRT-PCR results confirmed the down-regulation of CK8 expression in IDD on both of protein and mRNA levels. Furthermore, approximately 37.4% of cell clusters were CK8 positive in IDD. Taken together, this is the first study to show a down-regulated CK8 expression and the percentage of CK8 positive cell clusters in IDD based upon multiple lines of evidence. Consequently, CK8 positive cells might be considered as a potential option in the development of cellular treatment strategies for NP repair.published_or_final_versio

    Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Get PDF
    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (R eco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra R eco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability

    Predicted Disappearance of Cephalantheropsis obcordata in Luofu Mountain Due to Changes in Rainfall Patterns

    Get PDF
    <div><h3>Background</h3><p>In the past century, the global average temperature has increased by approximately 0.74°C and extreme weather events have become prevalent. Recent studies have shown that species have shifted from high-elevation areas to low ones because the rise in temperature has increased rainfall. These outcomes challenge the existing hypothesis about the responses of species to climate change.</p> <h3>Methodology/Principal Findings</h3><p>With the use of data on the biological characteristics and reproductive behavior of <em>Cephalantheropsis obcordata</em> in Luofu Mountain, Guangdong, China, trends in the population size of the species were predicted based on several factors. The response of <em>C. obcordata</em> to climate change was verified by integrating it with analytical findings on meteorological data and an artificially simulated environment of water change. The results showed that <em>C. obcordata</em> can grow only in waterlogged streams. The species can produce fruit with many seeds by insect pollination; however, very few seeds can burgeon to become seedlings, with most of those seedlings not maturing into the sexually reproductive phase, and grass plants will die after reproduction. The current population's age pyramid is kettle-shaped; it has a Deevey type I survival curve; and its net reproductive rate, intrinsic rate of increase, as well as finite rate of increase are all very low. The population used in the artificial simulation perished due to seasonal drought.</p> <h3>Conclusions</h3><p>The change in rainfall patterns caused by climate warming has altered the water environment of <em>C. obcordata</em> in Luofu Mountain, thereby restricting seed burgeoning as well as seedling growth and shortening the life span of the plant. The growth rate of the <em>C. obcordata</em> population is in descending order, and models of population trend predict that the population in Luofu Mountain will disappear in 23 years.</p> </div
    corecore