14,313 research outputs found

    In-Mould Gel-Coating for polymer composites

    Get PDF
    Surface coatings (gel-coats) are often used on commercial composite mouldings for cosmetic and/or durability reasons. They have traditionally been prepared in open moulds with styrene vapour allowed to escape to the workspace and environment. This paper considers the development of in-mould gel-coating processes. A Double Glass Plate Mould (DGPM) was used to prepare flat composite test panels. Laminates were manufactured by liquid composite moulding processes. Conventional hand painted gel-coat, innovative In-Mould Gel-Coating with a trilayer separator fabric (IMGC) or In-Mould Surfacing with a silicone shim (IMS) were studied. The surface quality of the final products was measured using a Wave-Scan device while the adhesion of the gel-coat was characterised by pull-off tests. The new processes offer reasonable properties in a cleaner, more controlled process

    Hydrostatic pressure induced Dirac semimetal in black phosphorus

    Get PDF
    Motivated by recent experimental observation of an hydrostatic pressure induced transition from semiconductor to semimetal in black phosphorus [Chen et al. in arXiv:1504.00125], we present the first principles calculation on the pressure effect of the electronic structures of black phosphorus. It is found that the band crossover and reversal at the Z point occur around the critical pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma point and evolve into two hole-type Fermi pockets, and those in the Z-M lines move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0 Gpa. It demonstrates clearly that the Lifshitz transition occurs at Pc1P_{c1} from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space symmetry of bulk. This suggests the bright perspective of black phosphorus for optoelectronic and electronic devices due to its easy modulation by pressure.Comment: 7 pages, 9 figures, and 2 table

    Threshold voltage control to improve energy utilization efficiency of a power management circuit for energy harvesting applications

    Get PDF
    This is the author accepted manuscript. The final version is available from MDPI via the DOI in this record.Eurosensors 2018 Conference, 19-12 September 2018, Graz, AustriaThis work presents a design approach that improves power management circuit (PMC) for energy harvesting applications so that more of the harvested energy can be utilized by the wireless sensor nodes (WSNs) to perform useful tasks. The proposed method is widely applicable to different circuits by setting an appropriate threshold voltage at the energy flow control interface of the circuit. Experimental results show that with a threshold voltage difference of around 20 mV, the energy output from the PMC can differ by more than 5%. This difference is significant over a long period of time as more tasks can be performed by the WSN with the extra energy.This work has been partly supported by the Engineering and Physical Sciences Research Council, U.K., through the project En-ComE under Grant EP/K020331/1 and Innovate UK through the project Multi-source power management to enable autonomous micro energy harvesting systems

    Strain Energy Harvesting Powered Wireless Sensor Node for Aircraft Structural Health Monitoring

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, HungaryThis paper presents a wireless sensor node (WSN) powered by a strain energy harvester (SEH) through an adaptive power management module (PMM) for aircraft structural health monitoring (SHM). The energy distribution in the system, the efficiencies of the whole systems, and the WSN powering capability of the SEH under different strain loadings were studied to understand the developed system performance for practical applications of an autonomous WSN. Experimental results show that the SEH is able to produce up to 3.34 mW under strain loading of 600 μɛ at 10 Hz. The WSN can be powered up through the adaptive PMM at efficiency from 70 to 80% under different test conditions.The authors gratefully acknowledge financial support from EPSRC in the UK through funding of the research into EPSRC via the project entitled “En-ComE” (EP/K020331/1)

    Stem Cell Therapy for Retinopathy of Prematurity

    Get PDF
    Retinopathy of Prematurity (ROP) is a leading cause of childhood blindness that severely affecting the quality of life of these children. Few treatment options are available but without favorable outcomes. Stem cell therapy, through its proven potential in tissue regeneration, provides an attractive therapeutic approach in treating ROP and thereby restoring vision.published_or_final_versio

    Energy Harvesting Powered Wireless Sensor Nodes With Energy Efficient Network Joining Strategies

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper presents strategies for batteryless energy harvesting powered wireless sensor nodes based on IEEE 802.15.4e standard to join the network successfully with minimal attempts, which minimizes energy wastage. This includes using a well-sized capacitor and different duty cycles for the network joining. Experimental results showed a wireless sensor node that uses a 100 mF energy storage capacitor can usually join the network in one attempt but multiple attempts may be needed if it uses smaller capacitances especially when the harvested power is low. With a duty-cycled network joining, the time required to form a network is shorter, which reduces the overall energy usage of the nodes in joining the network. An energy harvesting powered wireless sensor network (WSN) was successfully formed in one attempt by using the proposed methods.Engineering and Physical Sciences Research Council (EPSRC
    corecore