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Abstract 

Surface coatings (gel-coats) are often used on commercial composite mouldings for cosmetic 

and/or durability reasons.  They have traditionally been prepared in open moulds with styrene 

vapour allowed to escape to the workspace and environment.  This paper considers the 

development of in-mould gel-coating processes.  A Double Glass Plate Mould (DGPM) was 

used to prepare flat composite test panels.  Laminates were manufactured by liquid composite 

moulding processes.  Conventional hand painted gel-coat, innovative In-Mould Gel-Coating 

with a trilayer separator fabric (IMGC) or In-Mould Surfacing with a silicone shim (IMS) 

were studied.  The surface quality of the final products was measured using a Wave-Scan 

device while the adhesion of the gel-coat was characterised by pull-off tests.  The new 

processes offer reasonable properties in a cleaner, more controlled process. 

Keywords: A. Polymer-matrix composites (PMCs); B. Adhesion; D. Surface analysis;  

E. Resin transfer moulding (RTM) 

1. Introduction 

The fibre reinforced polymer matrix composites industry recently had annual production of 

nearly 3 million tonnes of material in the United States of America [1] and over 2 million 

tonnes in the European Union [2].  The high-performance sectors (aerospace, biomedical and 

defence) make up a significant proportion of the economic value.  More than 80% of the 

market mass is “commercial” mouldings (e.g. automotive, chemical plant, construction, 

marine, rail, and energy) which often have a gel-coat surface for cosmetic and/or durability 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/74391318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jsummerscales@plymouth.ac.uk


 
2 

reasons.  The gel-coat is normally applied by hand- or spray-painting onto the open mould 

followed by gel hardening in the open tool before composite lamination.  This leads to 

consequent elevated levels of volatile organic compounds (VOC) in the workplace and the 

environment, and risk of human error in the production process.  Harmonisation of styrene 

occupational exposure levels across Europe is expected to settle on 20 ppm, which will be 

difficult to achieve with open mould processes. 

Technologies for in-mould gel-coating have recently been reviewed by Rogers et al. [3].  The 

principal drivers for change are the legislative framework for worker health, the environment 

and economic considerations.  The principal in-mould gel-coating techniques are either 

insertion of a coating film into the mould tool or mould opening to create space for the 

injection of the coating.  The latter technique is not suitable for surfaces/draft angles normal 

to the mould opening direction as little or no additional space is created in this plane. 

Two recent patent publications have proposed methods which may address this limitation for 

liquid composite moulding technologies: In-Mould Gel-Coating (IMGC) using a separator 

fabric [4], and In Mould Surfacing (IMS) with a silicone shim [5].  Di Tomasso et al. [6] 

reported ranges for styrene time-weighted average (TWA) concentrations to be 28-70 ppm for 

the open mould gel-coating process and 0.23–0.37 ppm for the IMGC and IMS closed mould 

technologies studied in this paper.  The new processes reduce average styrene emission levels 

by over 98% with obvious benefits for worker health and the reduction of environmental 

burdens.  The two methods are discussed below. 

1.1 In-Mould Gel-Coating (IMGC) 

The alternative to open-tool gel-coating is to mould the laminate in a closed mould tool then 

slightly open the mould to create space where the gel-coat can be injected. The mould-

opening technique is adequate for flat mouldings but requires complex tooling for 3D 

components if a uniform gel-coat thickness is to be achieved.  The initial concept for an 
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IMGC process was to develop a spacer/barrier fabric (separator layer) to create a permeable 

void space adjacent to the mould tool surface into which gel-coat could be injected whilst 

keeping the laminate and gel-coat resins apart. This technique allows complete manufacture 

of a composite component in a closed mould tool system, thus minimising styrene emissions, 

and provides a controlled thickness gel-coat surface which sensibly conforms to the tool face 

topology. The concept is applicable to all Liquid Composite Moulding (LCM) processes, 

especially Resin Transfer Moulding (RTM) and Resin Infusion under Flexible Tooling (RIFT, 

a.k.a. SCRIMPTM or VARTM).  Automation of gel-coat application could deskill the process 

and improve repeatability of gel-coating.  

The tri-laminate separator layer systems tested to date have proven to be the weak link when 

testing gel-coat-to-laminate adhesion strength.  All components of the system should be 

unaffected (e.g. not swollen or dissolved) by the resin system in use. The tri-laminate must be 

achieved within an economic framework that allows the technology to compete with current 

low-skill processes until the legislative framework forces changes in the industry.  The tri-

laminate challenge for advanced textile processes is to generate a conformable, chemically 

stable, tri-layer spacer fabric with good mechanical integrity (adhesion between layers and 

cohesion within layers).  The use of a separation layer could permit infusion of incompatible 

laminate and coating resins. Mechanical interlocking of the matrix and gelcoat by the 

separator layer could ensure greater adhesion. This could allow phenolic coatings for fire 

resistance, or poly/vinyl-ester coatings for good cosmetic finish, on any laminate resin 

system.  The optimum separator layer has not yet been identified.  Failure may occur where 

the separator layer joins to either the gelcoat or the laminate or there may be cohesive failure 

within the spacer/barrier fabric. The material combinations studied to date may limit the wider 

application of the technology.  The merits and disadvantages of IMGC relative to hand lay-up 

are summarised in Table 1. 
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1.2 In-Mould Surfacing Technology (IMS) 

An alternative approach investigated was the IMS technology patented by Alan Harper 

Composites (AHC) [5].  This uses a removable, preferably reusable, low adhesion elastomeric 

(silicone or similar) shim in the mould tool during lamination to define the space that will 

become the gel-coat layer.  After laminating the component with the shim in place in the 

mould, the mould is opened at the appropriate degree of cure to remove the shim while the 

component remains attached to the counterface of the mould, then the mould is closed before 

gel-coat is introduced into the remaining space.  The merits and disadvantages of IMS relative 

to hand lay-up are summarised in Table 1. 

This paper considers both the IMGC and IMS technologies as potentially viable routes to 

closed mould gel-coating processes.  Key performance indicators (surface quality and pull-off 

adhesion tests) are measured and referenced to values from conventional hand painted gel-

coat techniques.  Surface quality is often measured to quantify gloss, waviness and print-

through [7-9] with the automotive industry using goniophotometry [10], ASTM E430–11 and 

Wave-Scan instruments [11-13].  It is essential for the composites producers in the European 

Union to be ready for any impending changes to permitted styrene levels arising from the 

Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) regulations.  

As Robertson [14] drawing on Willard [15] and Doppelt [16], wrote “[p]reparing in a 

proactive orderly way is almost always more cost-effective than having to respond reactively 

to a changing regulatory environment”. 
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2. Experiments 

2.1 Materials 

The materials used during the experiments are described below.  For mould release Loctite 

Frekote 770-NC semi-permanent mould release (batch LN2CAA9290 1632) and Meguiar’s 

Mirror Glaze no. 8 wax M-0811 were used. DeIjssel (Moordrecht, NL) ‘special VI ISO’ white 

pigmented polyester gel-coat (manufacturer data sheet; 600 mPa.s viscosity; experimental 

measurements: 46.4 ± 11.1 MPa tensile strength, 3.9 ± 0.3 GPa tensile modulus,  1.4 ± 0.4 % 

elongation at break, tested according to EN ISO 527-2 after 16 hours cure at 40°C then post-

cure for 4 hours at 80°C) with 2% Butanox M-50, methyl-ethyl ketone peroxide (MEKP) 

catalyst; DSM Synolite 1967-N-1 unsaturated DCPD-based polyester resin (manufacturer 

data sheet for resin cured with 1.5% NL49P accelerator + 1% Butanox M-50 MEKP catalyst, 

cure for 24 hours at room temperature followed by 24 hours post-cure at 70°C: 160-180 mPa.s 

initial viscosity, 70 MPa tensile strength, 3.8 GPa tensile modulus, 2.3% elongation at break, 

according to EN ISO 527-2) with 1.5% Butanox M-50 MEKP catalyst and Scott Bader 

Accelerator G (1% solution of cobalt soap dissolved in styrene) were used.  The 

reinforcement was 300 gsm Saint Gobain Vetrotex Unifilo U850 random swirl glass fibres.  

Baltex (Ilkeston, UK) and CentroCot (Busto Arsizio, Italy) supplied tri-laminate fabrics as 

separator layers.  They consist of polyester (PET) knitted fabrics adhesively bonded on both 

sides of 50 μm impermeable polyurethane (PU) film.  For RTM/IMS technology, a sprayed 

addition-polymerisation silicone shim membrane defines the gel-coat volume (Alan Harper 

Composites Ltd (AHC)).  Spabond (Gurit, UK) 340LV epoxy adhesive system with fast 

hardener was used to prepare the pull-off adhesion test samples.  For better comparison of the 

results commercial components were also used.  Their characteristics are summarised in 

Appendix A. 
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2.2 Sample manufacturing process 

To sensibly simulate the RTM process and allow appropriate in-mould gel-coating 

experiments to be undertaken, a Double-Glass-Plate-Mould (DGPM) was used (Fig. 1) to 

permit full visibility of both the gel-coat and resin flow into the cavity in order to better 

understand the process.  The DGPM has two 300 square x 19 mm thick plates of glass (to 

withstand injection pressures) each with a central injection point to allow injection of gel-coat 

or laminate resin to the respective sides of the separator fabric.  The glass plates are held a set 

distance apart by four stainless steel shims creating a 4 mm cavity in which the laminate 

complete with gel-coat is produced.  Neoprene inner (∅ 8 mm) and outer (∅ 6 mm) frame 

seals were coated with mirror glaze wax to prevent bonding to the cured laminate.  The first 

halves of each of the inner and outer frame seals were placed against one side of the mould in 

the correct position.  Breather cloth was placed between the frame seal and the mould tool 

face at all four corners to create vent paths.  The four shims were placed in the space between 

the inner and outer seals at the four corners of the mould.  The two glass plates (with four-

layer fibre-pack, sealants, separator fabric, shims etc. between them) were placed inside the 

clamping frames with four M12 bolts used to pull the two halves together.  A ratchet torque 

wrench was used when clamping the mould to ensure the cavity height was equal at all four 

corners.  Both resin and gel-coat were injected using BD Plastipak 100 ml capacity syringes at 

ambient temperature with only positive pressure and with a one hour interval for one resin to 

gel before the other resin was injected. 

For sample preparation, three different methods were applied: (a) conventional hand-painted 

gel-coat (CHP), (b) In-Mould Gel-Coating (IMGC) process with trilayer separator fabric to 

isolate the resin and gel-coat sides, and (c) In-Mould Surfacing (IMS) technology using 

silicone shim to form the cavity prior to subsequent gel-coat injection.  In every case, the 

DSM polyester resin and the DeIjssel gel-coat were used as laminate resin and gel-coat 
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respectively to prepare the flat composite test panels.  The ambient conditions were 23±2°C 

temperature, 45±10% relative humidity and 1020±10 mbar atmospheric pressure.  After 

sample preparation, all laminates were cured at 40°C for 16 h before an 80°C post-cure for 4 h 

to ensure full cure of the composite samples before the mould was opened.  A 20°C/hour 

ramp rate was used in all cases. 

Hand-painted ~200 mm square flat panels were produced by applying and gelling (one hour 

dwell time) the coating on a glass plate before the four layer Unifilo glass reinforcement 

laminate was manufactured by resin infusion under flexible tooling with a flow medium 

(RIFT II) [17] at ~15 mbar absolute pressure. 

For the IMGC samples, a 320 mm square separator fabric was draped over the fibre pack and 

frame seals and the second set of inner and outer frame seals placed above the separator fabric 

in the DGPM tool. This inner frame seal would define the gel-coat cavity with the outer frame 

seal being the secondary sealing arrangement.  The gel-coat was injected with one hour dwell 

time before the laminate resin was introduced. 

In-Mould-Surfacing (IMS) samples were also made in the DGPM.  For IMS, only the outer 

frame seals were used and a 210 mm square 1 mm thick silicone shim (previously made 

between two shimmed glass plates) was placed into the mould tool before the glass 

reinforcement.  The fibre pack was then cut to 190 mm square and placed inside the outer 

frame seal with a 5 mm peripheral gap.  Laminate resin was injected first, allowed to cure for 

one hour, then the silicone shim was removed, breather cloths placed into each corner for 

venting and gel-coat was injected with a second syringe. 

2.3. Surface measurements 

The surface quality of the samples was monitored using a Qualitest Wave-Scan Dual device 

(Model GB-4840, serial number 1062212) and 100 mm scan length.  The parameters selected 

were: dullness (du), structure spectrum at different representative wavelength ranges (Wa, 



 
8 

Wb, Wc, Wd and We), shortwave (SW), longwave (LW) and distinctness of image (DOI) 

according to ASTM E430-11 [18].  Low dullness (du) and low spectrum (Wa…We) indicate a 

high gloss surface.  For example, du < 40 means a high gloss surface while du in the range 

40-65 represents “semi-gloss to high gloss”. When the DOI is high, the surface is smoother 

and much glossier.  The maximum (best) value of DOI is 96. 

2.4 Cross-section analysis 

The composite samples were mounted in potting resin (Stuers Epofix resin with hardener) and 

cured for 24 h at room temperature. The samples were then ground and polished (Buehler 

Metpol 2000 grinder/polisher machine) and analysed using an optical microscope (Olympus 

BX60M) with Stream Motion software. 

2.5 Pull-off adhesion tests 

Pull-off tests were carried out according to EN ISO 4624:2002 [19] to characterise the 

adhesion between the gel-coat and the substrate.  Two target levels were set for pull-off 

adhesion strength: a minimum value of 8 MPa for low-performance situations, and a target of 

20 MPa for components subjected to high stresses.  For each sample, square plates of 

minimum 30 mm edge were cut with a diamond blade. Six specimens were used for each 

sample set. Both sides of the specimens were roughened with P80 (grit size of 200 µm) 

sandpaper for increased mechanical keying of the adhesive.  Aluminium faced cylindrical test 

“dollies” were prepared with a nominal diameter of 20 mm on one side and M10 thread on the 

other side. The dollies faces were machined perpendicular to their principal axis and were 

sand blasted in a Guyson Super 6 Blastcleaner Cabinet (serial no. 68668) with alumina blast 

abrasive media (Guyson NFK 100 Brown Saftigrit CSS12 issue 8) immediately before 

bonding to minimise contamination of the surface.  The region outside the intended bonding 

area was temporarily protected using masking tape.  The aluminium test dollies were fixed 

into a centring device with three M8 bolts to ensure proper coaxial alignment during bonding 
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with the epoxy adhesive system.  The samples were post cured at 70°C for 5 hours before the 

pull-off test.  The cured adhesive and gel-coat on the test specimens was cut through to the 

substrate around the circumference of the dollies using a DeFelsko PosiTest Pull-Off 

Adhesion Tester cutting tool with 20 mm inner diameter [20].  The dollies were extended 

using a 60 mm long and 16 mm diameter steel adapter with M10 metric internal thread on 

both sides which can then be easily installed in Instron type 500.625 M2 16 grips for the pull-

off test permitting a longer gripping surface.  An Instron universal test frame (system ID: 

5582J7466, S1-16754) with a ±100 kN load cell (cat.no. 2525-801, ser.no. UK195) was used 

for the measurements.  To comply with the ISO 4624:2002 test standard, failure should occur 

within 90 s.  A 1 N preload and a 60±1 mm gap between the grip faces were set.  The test 

speed was 1 mm/min. 

3. Results and discussion 

3.1 Surface measurement results 

Six Wave-Scan measurements were made along two orthogonal directions for every sample.  

For the orthotropic IMGC samples, the test directions were aligned with the wale/course 

respectively.  The data are summarised in Table 2 and plotted in Fig. 2.  All the mean values 

of the spectrum parameters were below 10 indicating that the surfaces have high gloss.  In 

some small areas of the hand painted samples, there were minor patches of fibre print-

through.  The commercial parts had a wide range of surface quality.  The boat sections and car 

panels had high gloss surface in overall (Wave-Scan values are less than 30).  The highest 

surface quality was for Boat 1 sample with the values are less than 3.  The bridge components 

were quite dull (Wave-Scan values between 30 and 80).  These differences can be explained 

by the various requirements of these sectors. 
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3.2 Cross-section analysis results 

The cross-sections of the samples were analysed as well as the thicknesses of the different 

layers.  Fig. 3 shows cross-sections for hand painted, IMS, IMGC (T6, NT1 and NT2 

trilayers) samples with the data in Table 3.  The low coefficient of variation (CoV) for IMS 

panels was a result of the accurate thickness of the silicone shim used to define the cavity 

before gel-coat was injected.   The NT1 fabrics had large intratow voids in the composites and 

consequent lower pull-off strength.  The hand-painted and IMS samples both had no evidence 

of intratow voids with improved adhesion between the gel-coat and glass reinforced polyester.  

The hand-painted samples had an intimate connection between the laminate and gel-coat 

resins with some glass fibres partially embedded in the gel-coat which may improve the 

adhesion. The glass fibres of IMS samples were all embedded in the laminate resin.  The 

topology of the reinforcement is reflected in the form of the gel-coat to laminate interface, but 

not at the cosmetic external surface 

3.3 Pull-off adhesion tests results 

The tests were conducted with great care to avoid off-axis stresses and thus minimise early 

cleavage and/or peel failure.  A deeper understanding of the interactions between the different 

layers of the composite would require in situ strain/stress measurement which is a non-trivial 

issue given the sample dimensions (63 mm perimeter by 3 to 4.5 mm thick) and the presence 

of the individual sub-layers presented edge-on during testing. The pull-off test results of flat 

panels from the hand painted gel-coat, IMGC (T6, NT1 and NT2) and IMS are summarised in 

Table 3, while the possible failure modes are classified in Fig. 4. 

The hand painted gel-coat samples were used as a reference.  They all failed within the 

composite structural laminate (Fig. 5a) in the same way as the commercial components used 

for comparison (Mode D).  Almost the complete surface of the glass fibres became white after 

the test showing the resin was cracking from the fibres during the fracture.  It underpins the 
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good surface adhesion between the gel-coat and the composite part because the fibres are both 

embedded in the resin and the gel-coat (see the cross-sectional image of Fig. 3a). 

The failure mode was delamination (Mode C) within the trilayer in all cases for the IMGC 

technology, which is completely different from the hand painted samples.  The pull-off 

strength of IMGC T6 was nearly 70% above the lower target 8 MPa level and almost double 

the results from previous tests with prototype separator layers [21].  However, this effect 

could also occur due to the change from Crystic to DSM resin.  The pull-off strengths for the 

optimised separator fabrics (NT1 and NT2) with IMGC technique were 10-20% below the 8 

MPa target attributed to the intratow voids either side of the separator fabrics.  The separator 

layers used to date are the weakest link in the load chain and have relied on a bonded three-

layer structure.  This effect can be seen in Fig. 5b and c on the test samples after pull-off test, 

where the impermeable film was completely removed from the surface.  There is scope for the 

development of integrated stronger separator systems with fibre continuity between the two 

faces and a membrane with no or very limited permeability to liquid resins at mid-thickness.  

This might be achieved by stitching/tufting through a polymer film but the film would need to 

close around the fibre-filled hole and the film would also require good tear resistance.  

Another alternative might be a polymer film with re-entrant features (e.g. hooks or 

mushrooms) to facilitate mechanical keying between the respective resins and the film.  To 

date, suppliers for such alternative materials with compatibility in the resin systems under 

consideration have not been identified. 

For the IMS technology, pull-off strengths achieved the higher 20 MPa target and the mean 

value fell just 10% short of that for the hand painted samples with the same resin and gel-coat 

system.  This difference can be explained by the lower amount of fibres that took part in the 

load transfer during the pull-off test; see the resin failure parts in Fig. 5d, which is the result 

of the slightly uneven gel-coat line in Fig. 3b.  The failure mode was cohesive fracture within 
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the composite structural laminate (Mode D).  However, the adoption of any silicone 

technology will not be readily implemented for high-performance composite industries due to 

the potential for silicone transfer that may compromise subsequent adhesive bonding (or 

painting).  Further, while the membranes are reusable, they currently do have a finite lifetime 

of the order of tens of cycles dependent on the resin system in use. 

Figure 6 shows the pull-off adhesion strengths for the above samples referenced to 

measurements from a variety of commercial mouldings sourced from both within and outside 

the consortium and from an earlier TSB-funded Zero Emission Enterprises (ZEE)  

project [22]. 

4. Conclusions 

The two different approaches both offer significant reductions in styrene levels in the 

workplace [4].  The gel-coating of the hand-painted flat panels, the IMGC and the IMS panels 

gave complete surfaces with just minor imperfections reflecting the topology of the moulding 

glass plates.  In all cases, the Wave-Scan results for the flat panels indicated high gloss 

surfaces. 

The more promising environmental benefits of the IMGC technology are compromised by the 

fragile structure of the separator layers available to date.  The technology suffers from poor 

pull-off strength due to delamination within the separator layer, albeit that the trilayer fabrics 

used in InGeCt project had double the strength of fabrics from the earlier ZEE project.  This 

issue may be mitigated by integrated stronger separator systems but such alternative materials 

have not been identified yet.  The IMS technology resulted in cohesive failure in the laminate 

and the results were just 10% short of that for the hand painted samples, but the industry 

perception of silicone contamination and styrene release during shim removal remain as 

issues.  However, the new processes offer a comparable surface and adhesive pull-off 

properties to the tested commercial samples. 
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The future research challenge is to design a separator layer with improved mechanical 

integrity and then to develop the layer further to enhance conformability to three-dimensional 

topology complex composite surfaces.  There is scope for further optimisation of the process, 

and to address the issues in Table 1.   

Acknowledgements 

This research was funded by the European Union's Seventh Framework Programme managed 

by REA-Research Executive Agency [FP7/2007-2013] and [FP7/2007-2011] under grant 

agreement number FP7-SME-2011-1-286520.  The partners were Advanced Composites 

Manufacturing Centre/University of Plymouth (UK), Alan Harper Composites Ltd (UK), 

Centro Tessile Cotoniero E Abbigliamento SpA (IT), De IJssel Coatings BV (NL), KMT 

Nord APS (DK), Lightweight Structures BV (NL), Tessitura Valdolona SRL (IT), SP 

Technical Research Institute of Sweden/YKI Ytkemiska Institutet AB (SE).  The project 

website is www.ingect.eu.  The DGPM concept was developed by Jo Wiggers (PERA) and 

Will Rogers and refined by Chris Hoppins.  The authors gratefully acknowledge technical 

support from Richard Cullen, Gregory Nash and Terry Richards.  Further we are grateful to 

the various companies who provided commercial samples for reference tests. 

 

References 

[1] Anon., 2012. The composites industry in North America.  

http://www.jeccomposites.com/knowledge/international-composites-news/jec-group-

projects-strong-growth-americas-composites (accessed 02.08.2016). 

[2] Kraus T, Kiihnel M, Witten E. Composites Market Report 2014. Market developments, 

trends, challenges and opportunities, AVK—Industrievereinigung Verstarkte Kunststoffe 

e V. 2014.  http://www.eucia.eu/userfiles/files/20141008_market_report_grpcrp.pdf 

(accessed 06.07.2016). 

[3] Rogers W, Hoppins C, Gombos Z, Summerscales J. In-mould gel-coating of polymer 

http://www.ingect.eu/
http://www.jeccomposites.com/knowledge/international-composites-news/jec-group-projects-strong-growth-americas-composites
http://www.jeccomposites.com/knowledge/international-composites-news/jec-group-projects-strong-growth-americas-composites
http://www.eucia.eu/userfiles/files/20141008_market_report_grpcrp.pdf


 
14 

composites: a review. J Clean Prod. 2014;70:282-291. 

[4] Harper, AR., Summerscales, J, Brooks, N. Production of composite mouldings, GB Patent 

GB 2 432 336A, issued on 23.05.2007. 

[5] Harper, AR. 2013. Production of composite mouldings. GB Patent WO2013132211, 

issued on 02.09.2013. 

[6] Di Tomasso C, Gombos ZJ, Summerscales J. Styrene emissions during gel-coating of 

composites. J Clean Prod. 2014;83:317-328. 

[7] Lin H-J, Lai W-M, Huang H-D, Kuo Y-M. Discussion on the cause of print-through 

phenomenon of FRP and several improvement methods. J Compos Mater. 

2010;44(17):2111-2126. 

[8] Lin H-J, Liao C-I, Jiang R-L, Kuo Y-M. Print-through phenomenon on the surface of 

GFRP: pilot study. J Compos Mater. 2007;41(26):3055-3078. 

[9] Li W, Lee LJ. Shrinkage control of low-profile unsaturated polyester resins cured at low 

temperature. Polymer. 1998;39(23):5677-5687. 

[10] Nimeroff I. Analysis of goniophotometric reflection curves. J Opt Soc Am. 

1952;42(8):579-583. 

[11] Osterhold M, Armbruster K. Characterizing the surface structure of plastics coatings. 

Prog Org Coat. 2006;57(2):165-169. 

[12] Osterhold M, Armbruster K. Characterizing the appearance of medium glossy surfaces. 

Prog Org Coat. 2009;65(4):440-443. 

[13] Herring M, Mardel J, Fox B. The effect of material selection and manufacturing process 

on the surface finish of carbon fibre composites. J Mater Process Technol. 

2010;210(6):926-940. 

[14] Robertson M. Sustainability principles and practice: Routledge; 2014. ISBN 978-0-415-

84018-7. 

[15] Willard, B. The sustainability advantage: seven business case benefits of a triple bottom 



 
15 

line, New Society Publishers, Gabriola Island BC; 2002.  ISBN 978-0-86571-451-9. 

[16] Doppelt B. Leading change toward sustainability. Sheffield: Greenleaf Publishing. 

2003. ISBN 978-1-87471-964-9. 

[17] Summerscales J, Searle T. Low-pressure (vacuum infusion) techniques for moulding 

large composite structures. Proceedings of the Institution of Mechanical Engineers, Part L: 

J Mater Des Appl. 2005;219(1):45-58.  

[18] Standard test methods for measurement of gloss of high-gloss surfaces by abridged 

goniophotometry, ASTM E430-11, ASTM International, West Conshohocken, PA; 2011. 

[19] Paints and varnishes - Pull-off test for adhesion, EN ISO 4624:2002, BSI Group, 

London; 2002. 

[20] Defelsko® Positest® Pull-Off Adhesion Tester, http://www.defelsko.com/adhesion-

tester/adhesiontester.htm, (accessed 31.03.2016). 

[21] CentroCot, Test results for Spacer technical textile for In-mould gel-coating 

applications, InGeCt_3.4-1.1_UoP_I_C_D; 2013. Confidential to the Consortium 

members for five years. 

[22] Summerscales J, Hoppins C, Anstice P, Brooks N, Wiggers J, Yahathugoda D, Harper 

A, Wood C, Cooper M. In-mould gel-coating for resin transfer moulding.  The 10th 

International Conference on Flow Processes in Composite Materials (FPCM10), Monte 

Verità, Ascona, CH, July2010. p. 11-5. 

http://www.defelsko.com/adhesion-tester/adhesiontester.htm
http://www.defelsko.com/adhesion-tester/adhesiontester.htm


 
16 

 

 

(a) 

 

(b) 

Fig. 1.  Cross section view of DGPM arrangement during IMGC (a) and IMS (b) technique 

    

(a)      (b) 

Fig. 2.  Wave-Scan measuring results for commercial (a) and test samples (b); HP – hand 

painted, IMGC – In-Mould Gel-Coated, IMS – In Mould Surfacing samples 
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(a)      (b) 

   

(c)      (d) 

Fig. 3.  Cross-sections of (a) hand painted (UoP#59), (b) IMS (UoP#58),  

and IMGC (c) T6:UoP#57 and (d) NT1:UoP#64 samples
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(a)     (b) 
Fig. 4.  Representation of the pull-off test specimen layers without (a) and with (b) separator 

fabric and their failure modes as follows:  A - cohesive failure of upper test dolly (did not 

occur), A/B - adhesive failure between upper test dolly and gel-coat,  

B - cohesive failure of gel-coat, B/C - adhesive failure between gel-coat and separator fabric 

(delamination), B/D - adhesive failure between gel-coat and composite laminate 

(delamination), C - failure of separator fabric (e.g. delamination within the layers), C/D - 

adhesive failure between separator fabric and composite laminate, D - cohesive failure of 

composite laminate,  

D/E - adhesive failure between composite laminate and lower test dolly, E - a cohesive failure 

of lower test dolly (did not occur) 
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(a)    (b)    (c)    (d) 

 
Fig. 5.  Representative failed surfaces of the hand painted (a), IMGC with T6 (b) and NT1 (c) 

separator fabrics and IMS technology (d) samples after pull-off test 

 

 
 

 

Fig. 6.  Pull-off strengths for gel-coat to structural laminate for a variety of commercial 

moulding and for the plates manufactured in this research. The different colours indicate 

different resin systems. HP – hand painted, IMGC (B) and IMGC (T6) – In-Mould Gel-

Coated samples with Baltex and CentroCot trilayer #6 separator fabrics respectively,  

and IMS – In Mould Surfacing sample
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Table 1  
The relative merits and disadvantages of IMS and IMGC relative to hand lay-up 

IMGC IMS 

Advantages 
• More controlled process for lay-up and gel-coat thickness control. 
• Faster gel-coating time. 
• Reduced gel-coat thickness relative to HLU 
• Minimal styrene emissions throughout the process. 
• May be one of a limited number of choices if occupational exposure 

levels for styrene are reduced. 
• Incompatible laminate and gel-coat resins easily implemented. 
• Possibility of simultaneous gel-coat and laminate resin injection subject 

to appropriate control systems. 

Advantages 
• More controlled process for lay-up and gel-coat thickness control. 
• Faster gel-coating time. 
• Reduced variation in gel-coat thickness. 
• Gel-coat thickness determined by chosen shim. 
• Minimal styrene emissions, except while removing shim. 
• May be one of a limited number of choices if occupational exposure levels 

for styrene are reduced. 
• Shim may be ~€20/m2 with potential for >10 product cycles/shim 

Disadvantages 
• Collapse of the separator layer under consolidation pressure leading to 

reduced permeability and inhibiting the flow of gel-coat.  
• Print-through of fibres in the separator layer, or close to the gel-coat 

surface, affecting surface finish and compromising customer 
acceptance, service, durability and repair, 

• Potential for wicking of moisture through the fabric, particularly over 
extended timescales. 

• Separator layer drape/conformability may be limited for complex three-
dimensional tools 

• Folds, wrinkles and joints where components exceed standard fabric roll 
widths. 

• Sharp corners in the tool could pierce the separator layer. 
• Reduced permeability to the resin system adjacent to 3D features in the 

mould. 
• New technology without service history biasing clients against adoption. 
• Additional costs may be unacceptable to industry until driven by changes 

in VOC regulations. 
• Development separator fabrics are likely to cost >€5/m2 in production 

Disadvantages 
• Styrene emissions to the workplace when the mould tool is opened to remove 

the shim.  
• Silicone transfer to the mould and component surfaces with the potential for 

weak interfaces where subsequent bonding (or painting) are required. 
• Control of part alignment on very large structures (boat hulls or wind 

turbines) especially if the component separates from the mould during shim 
removal. 

• Shim handling and consequent labour requirements. 
• Potential for sagging issues dependent on mould geometries. 
• Limited options for different chemistry in the gelcoat and the laminate resins. 
• Limited durability of the shim over repeated process cycles 
• Scalability of the process for very large components. 
• Additional costs may be unacceptable to industry until driven by changes in 

VOC regulations. 
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Table 2 
Wave-Scan measuring results 

 
Wavelength 

ranges 

Hand 

painted 

IMGC technology IMS 

technology T6 NT1 NT2 

du <0.1 mm 7.4±3.4 8.0±0.5 8.5±0.8 9.9±0.5 8.7±0.6 

Wa 0.1 – 0.3 mm 0.3±0.3 1.5±0.5 1.4±0.6 4.1±0.6 1.4±0.9 

Wb 0.3 – 1 mm 0.6±0.3 3.2±1.2 3.4±1.8 9.5±1.7 3.4±2.4 

Wc 1 – 3 mm 1.2±1.0 1.9±0.7 2.8±1.9 5.5±0.8 4.4±2.1 

Wd 3 – 10 mm 4.4±1.8 3.1±1.3 3.5±1.8 5.1±1.3 7.0±2.5 

We 10 – 30 mm 3.7±1.8 5.0±1.3 6.0±2.0 5.5±1.6 6.0±2.0 

SW 0.3 – 1.2 mm 0.5±0.3 2.3±1.0 2.7±1.6 8.6±0.6 2.9±2.1 

LW 1.2 – 12 mm 0.9±5.0 0.8±0.4 1.2±1.0 2.0±1.5 2.1±0.9 

DOI range = 0–96 93.9±0.1 93.4±0.2 92.2±0.3 92.0±0.3 92.8±0.3 
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Table 3 
Pull-off adhesion properties for experimental and commercial samples 

 Hand painted 
IMGC technology 

IMS technology Commercial components 
T6 NT1 NT2 

Plate ID UoP#59 UoP#57 UoP#64 UoP#67 UoP#58 Car 3 Car 2 Bridge 1 Bridge 2 Boat 4 

Composite 

thickness 

(mm) 

2.97±0.28 4.08±0.04 4.29±0.02 4.21±0.04 3.64±0.03 0.97±0.02 2.89±0.02 3.66±0.10 3.73±0.15 2.77±0.15 

Gel-coat  

thickness 

(mm) 

CoV 

0.66±0.16 

(24%) 

1.25±0.17* 

(14%) 

1.63±0.20* 

(12%) 

1.36±0.30* 

(22%) 

1.07±0.03 

(3%) 

0.05±0.01 

 (20%) 

 0.21±0.01 

 (5%) 

0.26±0.03 

(11%) 

0.26±0.04 

(15%) 

0.37±0.07 

(18%) 

Breaking 

strength 

(MPa) 

21.73±1.55 13.30±0.44 6.65±0.28 7.33±0.53 19.75±0.53 8.77±0.52 34.79±2.01 22.61±2.38 21.78±3.48 17.80±1.22 

Typical 

failure 

mode 

D C C C D  D  D  D  D  D  

*IMGC technology gel-coat thickness includes the gel-coat side of the trilayers 
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Figure Captions 

Fig. 1.  Cross section view of DGPM arrangement during IMGC (a) and IMS (b) technique 

Fig. 2.  Wave-Scan measuring results of flat panels made by different processes at 

vertical/wale (a) and horizontal/course (b) directions 

Fig. 3.  Cross-section of hand painted, IMS, IMGC samples and the separator fabric 

embedded into composite structure 

Fig. 4. Representation of the pull-off test specimen layers without (a) and with (b) separator 

fabric and their failure modes 

Fig. 5. Representative failed surfaces of the hand painted (a), IMGC with T6 (b) and NT1 (c) 

separator fabrics and IMS technology (d) samples after pull-off test 

Fig. 6. Pull-off strengths for gel-coat to structural laminate for a variety of commercial 

moulding and for the plates manufactured in this research. The different colours indicate 

different resin systems. 
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Appendix A Characteristics of the commercial panels 

Component Characteristics of the lay-up 

Bridge 1 
gel-coat; QI non-crimp fabric (4x1200 gsm) infused directly on 
the partially cured gel-coat on the same day and demoulded next 
day (composite tooling). 

  

Bridge 2 
gel-coat; QI non-crimp fabric (4x1200 gsm) infused directly on 
the partially cured gel-coat (same day) and demoulded next day 
(coated steel tooling).* 

  

Boat 1 
gel-coat; barrier coat, hand laminated CSM layer; infused 
laminate of honeycomb structured surfacing veil (2 mm); non-
crimp fabric (6x1200 gsm).* 

  

Boat 2 
gel-coat; infused laminate of honeycomb structured surfacing 
veil (2 mm); glass fabric (200 gsm); 10 mm PVC core; glass 
fabric.* 

  

Boat 3 
gel-coat; barrier coat; infused laminate of honeycomb structured 
surfacing veil (2 mm); glass fabric (200 gsm); PVC core (10 
mm); glass fabric. 

  

Boat 4 gel-coat; CSM (300 gsm); QD glass (2x1200 gsm); PVC core (35 
mm); QD (2x1200 gsm).** 

  

Car 1 
paint on A-saloon front wing reverse engineering suggested 
46% fibre volume faction,  carbon fibre lay-up [  +45/-45/90/Ō ]s  
 

Car 2  paint on CFRP C-sports car panel*** 
  
Car 3 paint on GFRP M-sports car panel*** 
  
 
* samples were not tested by pull-off due to the failure of barrier coat or surface veil 

** PVC core and non-gel-coated laminate were removed prior to pull-off test 

*** car panel information is commercial-in-confidence 
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