175 research outputs found

    End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes

    Full text link
    Meta-Bayesian optimisation (meta-BO) aims to improve the sample efficiency of Bayesian optimisation by leveraging data from related tasks. While previous methods successfully meta-learn either a surrogate model or an acquisition function independently, joint training of both components remains an open challenge. This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures. We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data. Early on, we notice that training transformer-based neural processes from scratch with RL is challenging due to insufficient supervision, especially when rewards are sparse. We formalise this claim with a combinatorial analysis showing that the widely used notion of regret as a reward signal exhibits a logarithmic sparsity pattern in trajectory lengths. To tackle this problem, we augment the RL objective with an auxiliary task that guides part of the architecture to learn a valid probabilistic model as an inductive bias. We demonstrate that our method achieves state-of-the-art regret results against various baselines in experiments on standard hyperparameter optimisation tasks and also outperforms others in the real-world problems of mixed-integer programming tuning, antibody design, and logic synthesis for electronic design automation

    Capsicum baccatum red pepper prevents cardiometabolic risk in rats fed with an ultra-processed diet

    Get PDF
    Metabolic syndrome is a serious health condition reaching epidemic proportions worldwide and is closely linked to an increased risk of cardiovascular problems. The lack of appropriate treatment paves the way for developing new therapeutic agents as a high priority in the current research. In this study, we evaluated the protective effects of Capsicum baccatum red pepper on metabolic syndrome scenarios induced by an ultra-processed diet in rats. After four months, the ultra-processed diet increased central obesity, triglycerides, total cholesterol, LDL-cholesterol plasma levels, and impaired glucose tolerance. The oral administration of C. baccatum concomitantly with the ultra-processed diet avoided the accumulation of adipose tissue in the visceral region, reduced the total cholesterol and LDL fraction, and improved glucose homeostasis, factors commonly associated with metabolic syndrome. The data presented herein reveal an important preventive action of C. baccatum in developing metabolic disorders among animals fed a hypercaloric diet, significantly reducing their cardiometabolic risk. Allied with the absence of toxic effects after chronic use, our study suggests C. baccatum red pepper as a secure and enriched source of bioactive compounds promising to protect against pathological processes associated with metabolic syndrome

    A FUNÇÃO CONTROLE NA PERSPECTIVA CRÍTICA DA GESTÃO PÚBLICA: NOVOS OLHARES RUMO À GESTÃO UNIVERSITÁRIA DEMOCRÁTICA.

    Get PDF
    No contexto da gestão pública há muito se discute a importância do controle como função essencial, cuja articulação deve culminar com o alcance dos objetivos organizacionais. No entanto nos estudos predominam as abordagens que remetem o controle a uma perspectiva fragmentada da eficiência e deixa de considerar a multiplicidade de aspectos que o envolvem. A fim de contribuir e estimular este debate, por meio de uma pesquisa qualitativa e bibliográfica este estudo teve como objetivo analisar a função controle à luz de um modelo dialógico de gestão numa perspectiva crítica e reflexiva que considere as especificidades de uma gestão universitária democrática. Neste sentido, o controle enquanto fenômeno foi discutido sob a ótica da Gestão Social (GS), do Novo Serviço Público (NSP) e da Administração Pública Societal (APS). As conclusões apontam para a utilização dos pressupostos teóricos na construção de mecanismos universitários que possibilitem o diálogo e o controle dos processos através da participação da comunidade universitária e de outros atores também impactados, inclusive a sociedade

    Red pepper peptide coatings control Staphylococcus epidermidis adhesion and biofilm formation

    Get PDF
    Medical devices (indwelling) have greatly improved healthcare. Nevertheless, infections related to the use of these apparatuses continue to be a major clinical concern. Biofilms form on surfaces after bacterial adhesion, and they function as bacterial reservoirs and as resistance and tolerance factors against antibiotics and the host immune response. Technological strategies to control biofilms and bacterial adhesion, such as the use of surface coatings, are being explored more frequently, and natural peptides may promote their development. In this study, we purified and identified antibiofilm peptides from Capsicum baccatum (red pepper) using chromatography- tandem mass spectrometry, MALDI-MS, MS/MS and bioinformatics. These peptides strongly controlled biofilm formation by Staphylococcus epidermidis, the most prevalent pathogen in device-related infections, without any antibiotic activity. Furthermore, natural peptide-coated surfaces dislayed effective antiadhesive proprieties and showed no cytotoxic effects against different representative human cell lines. Finally, we determined the lead peptide predicted by Mascot and identified CSP37, which may be useful as a prime structure for the design of new antibiofilm agents. Together, these results shed light on natural Capsicum peptides as a possible antiadhesive coat to prevent medical device colonization

    Tannins possessing bacteriostatic effect impair pseudomonas aeruginosa adhesion and biofilm formation

    Get PDF
    Plants produce many compounds that are biologically active, either as part of their normal program of growth and development or in response to pathogen attack or stress. Traditionally, Anadenanthera colubrina, Commiphora leptophloeos and Myracrodruon urundeuva have been used by communities in the Brazilian Caatinga to treat several infectious diseases. The ability to impair bacterial adhesion represents an ideal strategy to combat bacterial pathogenesis, because of its importance in the early stages of the infectious process; thus, the search for anti-adherent compounds in plants is a very promising alternative. This study investigated the ability of stem-bark extracts from these three species to control the growth and prevent biofilm formation of Pseudomonas aeruginosa, an important opportunistic pathogen that adheres to surfaces and forms protective biofilms. A kinetic study (0–72 h) demonstrated that the growth of extract-treated bacteria was inhibited up to 9 h after incubation, suggesting a bacteriostatic activity. Transmission electron microscopy and fluorescence microscopy showed both viable and nonviable cells, indicating bacterial membrane damage; crystal violet assay and scanning electron microscopy demonstrated that treatment strongly inhibited biofilm formation during 6 and 24 h and that matrix production remained impaired even after growth was restored, at 24 and 48 h of incubation. Herein, we propose that the identified (condensed and hydrolyzable) tannins are able to inhibit biofilm formation via bacteriostatic properties, damaging the bacterial membrane and hindering matrix production. Our findings demonstrate the importance of this abundant class of Natural Products in higher plants against one of the most challenging issues in the hospital setting: biofilm resilience

    Capsicumicine, a new bioinspired peptide from red peppers prevents staphylococcal biofilm in vitro and in vivo via a matrix anti-assembly mechanism of action

    Get PDF
    Staphylococci are pathogenic biofilm-forming bacteria and a source of multidrug resistance and/or tolerance causing a broad spectrum of infections. These bacteria are enclosed in a matrix that allows them to colonize medical devices, such as catheters and tissues, and that protects against antibiotics and immune systems. Advances in antibiofilm strategies for targeting this matrix are therefore extremely relevant. Here, we describe the development of the Capsicum pepper bioinspired peptide “capsicumicine.” By using microbiological, microscopic, and nuclear magnetic resonance (NMR) approaches, we demonstrate that capsicumicine strongly prevents methicillin-resistant Staphylococcus epidermidis biofilm via an extracellular “matrix anti-assembly” mechanism of action. The results were confirmed in vivo in a translational preclinical model that mimics medical device-related infection. Since capsicumicine is not cytotoxic, it is a promising candidate for complementary treatment of infectious diseases

    The brief methylprednisolone administration is crucial to mitigate cardiac dysfunction after myocardial infarction

    Get PDF
    Acute myocardial infarction (AMI) is one of the major causes of heart failure and mortality. Glucocorticoids administration post-infarction has long been proposed, but it has shown conflicting results so far. This controversy may be associated with the glucocorticoid type and the period when it is administered. To elucidate these, the present aims to evaluate if the brief methylprednisolone acetate administration is determinant for heart adaptation after AMI. Male Wistar rats were divided into 3 groups: sham-operated (SHAM); infarcted (AMI); infarcted treated with methylprednisolone acetate (AMI+M). Immediately after surgery, the AMI+M group received a single dose of methylprednisolone acetate (40 mg/kg i.m.). After 56 days, the cardiac function was assessed and lungs, liver and heart were collected to determine rates of hypertrophy and congestion. Heart was used for oxidative stress and metalloproteinase activity analyses. Methylprednisolone acetate attenuated matrix metalloproteinase-2 activity, cardiac dilatation, and prevented the onset of pulmonary congestion, as well as avoided cardiac hypertrophy. Our data indicate that administration of methylprednisolone acetate shortly after AMI may be a therapeutic alternative for attenuation of detrimental ventricular remodeling

    Elevated glutamate and lactate predict brain death after severe head trauma

    Get PDF
    Objective: Clinical neurological assessment is challenging for severe traumatic brain injury (TBI) patients in the acute setting. Waves of neurochemical abnormalities that follow TBI may serve as fluid biomarkers of neurological status. We assessed the cerebrospinal fluid (CSF) levels of glutamate, lactate, BDNF, and GDNF, to identify potential prognostic biomarkers of neurological outcome. Methods: This cross-sectional study was carried out in a total of 20 consecutive patients (mean [SD] age, 29 [13] years; M/F, 9:1) with severe TBI Glasgow Coma Scale ≤ 8 and abnormal computed tomography scan on admission. Patients were submitted to ventricular drainage and had CSF collected between 2 and 4 h after hospital admission. Patients were then stratified according to two clinical outcomes: deterioration to brain death (nonsurvival, n = 6) or survival (survival, n = 14), within 3 days after hospital admission. CSF levels of brain-derived substances were compared between nonsurvival and survival groups. Clinical and neurological parameters were also assessed. Results: Glutamate and lactate are significantly increased in nonsurvival relative to survival patients. We tested the accuracy of both biomarkers to discriminate patient outcome. Setting a cutoff of >57.75, glutamate provides 80.0% of sensitivity and 84.62% of specificity (AUC: 0.8214, 95% CL: 54.55–98.08%; and a cutoff of >4.65, lactate has 100% of sensitivity and 85.71% of specificity (AUC: 0.8810, 95% CL: 54.55–98.08%). BDNF and GDNF did not discriminate poor outcome. Interpretation: This early study suggests that glutamate and lactate concentrations at hospital admission accurately predict death within 3 days after severe TBI

    Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis

    Get PDF
    BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-). PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorder

    The role of diabetes in metastatic melanoma patients treated with nivolumab plus relatlimab

    Get PDF
    Background The combination of nivolumab + relatlimab is superior to nivolumab alone in the treatment of naive patients and has activity in PD-1 refractory melanoma. We had previously observed a reduced expression of LAG3 in melanoma tissue from patients with type 2 diabetes. Method To evaluate the impact of diabetes on oncological outcomes of patients with advanced melanoma treated with nivolumab plus the LAG3 inhibitor relatlimab we performed a retrospective multicenter study. Results Overall, 129 patients were included: 88 without diabetes before the treatment, 37 who were diagnosed with type 2 diabetes before the start of treatment, and 4 without diabetes before treatment who developed immune checkpoint inhibitor-induced diabetes (ICI-DM). PFS was 21.71 months (95% CI: 15.61–27.81) in patients without diabetes, 10.23 months (95% CI: 5.81–14.66) in patients with type 2 diabetes, and 50.85 months (95% CI: 23.04–78.65) in patients who developed ICI-DM. OS was 37.94 months (95% CI: 31.02–44.85) in patients without diabetes, 22.12 months (95% CI: 14.41–29.85) in those with type 2 diabetes and 57.64 months (95% CI: 42.29–72.99) in those who developed ICI-DM. Multivariate analysis showed that the presence of diabetes and LDH was correlated with OS and PFS. The mean OS was 64.63 months in subjects with low levels of glucose ( 1.5) had a worse prognosis than those whose glucose level had not increased. This result was observed also in subgroups treated either in first line or further lines. Patients who developed ICI-DM during the study period had better outcomes than the overall population and patients without diabetes. Conclusions LAG3 inhibition for treating metastatic or unresectable melanoma has a reduced efficacy in patients with type 2 diabetes, possibly due to a low expression of LAG3 in tumor tissue. Higher level evidence should be obtained
    corecore