237 research outputs found

    Cosmological particle production, causal thermodynamics, and inflationary expansion

    Get PDF
    Combining the equivalence between cosmological particle creation and an effective viscous fluid pressure with the fact that the latter represents a dynamical degree of freedom within the second-order Israel-Stewart theory for imperfect fluids, we reconsider the possibility of accelerated expansion in fluid cosmology. We find an inherent self-limitation for the magnitude of an effective bulk pressure which is due to adiabatic (isentropic) particle production. For a production rate which depends quadratically on the Hubble rate we confirm the existence of solutions which describe a smooth transition from inflationary to noninflationary behavior and discuss their interpretation within the model of a decaying vacuum energy density. An alternative formulation of the effective imperfect fluid dynamics in terms of a minimally coupled scalar field is given. The corresponding potential is discussed and an entropy equivalent for the scalar field is found.Comment: 16 pages, revtex file, submitted to Phys. Rev.

    Cosmic anti-friction and accelerated expansion

    Get PDF
    We explain an accelerated expansion of the present universe, suggested from observations of supernovae of type Ia at high redshift, by introducing an anti-frictional force that is self-consistently exerted on the particles of the cosmic substratum. Cosmic anti-friction, which is intimately related to ``particle production'', is shown to give rise to an effective negative pressure of the cosmic medium. While other explanations for an accelerated expansion (cosmological constant, quintessence) introduce a component of dark energy besides ``standard'' cold dark matter (CDM) we resort to a phenomenological one-component model of CDM with internal self-interactions. We demonstrate how the dynamics of the LambdaCDM model may be recovered as a special case of cosmic anti-friction. We discuss the connection with two-component models and obtain an attractor behavior for the ratio of the energy densities of both components which provides a possible phenomenological solution to the coincidence problem.Comment: 19 pages, 7 (3 new) figures, new derivation of kinetic equation with force term, accepted by Physical Review

    Inhomogeneous models of interacting dark matter and dark energy

    Full text link
    We derive and analyze a class of spherically symmetric cosmological models whose source is an interactive mixture of inhomogeneous cold dark matter (DM) and a generic homogeneous dark energy (DE) fluid. If the DE fluid corresponds to a quintessense scalar field, the interaction term can be associated with a well motivated non--minimal coupling to the DM component. By constructing a suitable volume average of the DM component we obtain a Friedman evolution equation relating this average density with an average Hubble scalar, with the DE component playing the role of a repulsive and time-dependent Λ\Lambda term. Once we select an ``equation of state'' linking the energy density (μ\mu) and pressure (pp) of the DE fluid, as well as a free function governing the radial dependence, the models become fully determinate and can be applied to known specific DE sources, such as quintessense scalar fields or tachyonic fluids. Considering the simple equation of state p=(γ1)μp= (\gamma-1) \mu with 0γ<2/30\leq\gamma <2/3, we show that the free parameters and boundary conditions can be selected for an adequate description of a local DM overdensity evolving in a suitable cosmic background that accurately fits current observational data. While a DE dominated scenario emerges in the asymptotic future, with total Ω\Omega and qq tending respectively to 1 and -1/2 for all cosmic observers, the effects of inhomogeneity and anisotropy yield different local behavior and evolution rates for these parameters in the local overdense region. We suggest that the models presented can be directly applied to explore the effects of various DE formalisms on local DM cosmological inhomogeneities.Comment: 15 pages, revtex4, 10 eps figure

    Inhomogeneous vacuum energy

    Get PDF
    Vacuum energy remains the simplest model of dark energy which could drive the accelerated expansion of the Universe without necessarily introducing any new degrees of freedom. Inhomogeneous vacuum energy is necessarily interacting in general relativity. Although the four-velocity of vacuum energy is undefined, an interacting vacuum has an energy transfer and the vacuum energy defines a particular foliation of spacetime with spatially homogeneous vacuum energy in cosmological solutions. It is possible to give a consistent description of vacuum dynamics and in particular the relativistic equations of motion for inhomogeneous perturbations given a covariant prescription for the vacuum energy, or equivalently the energy transfer four-vector, and we construct gauge-invariant vacuum perturbations. We show that any dark energy cosmology can be decomposed into an interacting vacuum+matter cosmology whose inhomogeneous perturbations obey simple first-order equations.Comment: 8 pages; v2 clarified discussion of Chaplygin gas model, references adde

    Curvature force and dark energy

    Get PDF
    A curvature self-interaction of the cosmic gas is shown to mimic a cosmological constant or other forms of dark energy, such as a rolling tachyon condensate or a Chaplygin gas. Any given Hubble rate and deceleration parameter can be traced back to the action of an effective curvature force on the gas particles. This force self-consistently reacts back on the cosmological dynamics. The links between an imperfect fluid description, a kinetic description with effective antifriction forces, and curvature forces, which represent a non-minimal coupling of gravity to matter, are established.Comment: 14 pages; references added, to appear in New Journal of Physics (v3

    Observational constraints on Rastall's cosmology

    Full text link
    Rastall's theory is a modification of General Relativity, based on the non-conservation of the stress-energy tensor. The latter is encoded in a parameter γ\gamma such that γ=1\gamma = 1 restores the usual νTμν=0\nabla_\nu T^{\mu\nu} = 0 law. We test Rastall's theory in cosmology, on a flat Robertson-Walker metric, investigating a two-fluid model and using the type Ia supernovae Constitution dataset. One of the fluids is pressureless and obeys the usual conservation law, whereas the other is described by an equation of state px=wxρxp_x = w_x\rho_x, with wxw_x constant. The Bayesian analysis of the Constitution set does not strictly constrain the parameter γ\gamma and prefers values of wxw_x close to -1. We then address the evolution of small perturbations and show that they are dramatically unstable if wx1w_x \neq -1 and γ1\gamma \neq 1, i.e. General Relativity is the favored configuration. The only alternative is wx=1w_x = -1, for which the dynamics becomes independent from γ\gamma.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial modifications performed, main conclusions change

    Bulk viscosity driving the acceleration of the Universe

    Full text link
    The possibility that the present acceleration of the universe is driven by a kind of viscous fluid is exploited. At background level this model is similar to the generalized Chaplygin gas model (GCGM). But, at perturbative level, the viscous fluid exhibits interesting properties. In particular the oscillations in the power spectrum that plagues the GCGM are not present. Possible fundamental descriptions for this viscous dark energy are discussed.Comment: Latex file, 8 pages, 3 eps figure

    Thermodynamics of viscous dark energy in an RSII braneworld

    Full text link
    We show that for an RSII braneworld filled with interacting viscous dark energy and dark matter, one can always rewrite the Friedmann equation in the form of the first law of thermodynamics, dE=ThdSh+WdVdE=T_hdS_h+WdV, at apparent horizon. In addition, the generalized second law of thermodynamics can fulfilled in a region enclosed by the apparent horizon on the brane for both constant and time variable 5-dynamical Newton's constant G5G_5. These results hold regardless of the specific form of the dark energy. Our study further support that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.Comment: 11 page

    Plasma waves driven by gravitational waves in an expanding universe

    Full text link
    In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.Comment: 14 page

    On Internal Consistency of Holographic Dark Energy Models

    Full text link
    Holographic dark energy (HDE) models, underlain by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become a convincing candidate for the dark energy in the universe. On the other hand, the maximum number of quantum states a conventional QFT in the box of size LL is capable to describe, refer to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cutoff, which cannot be chosen independently of the IR cutoff and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation-dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT.Comment: 8 pages, version to appear in JCA
    corecore