20 research outputs found

    Recombinant IFN-α in Lymphomas

    Get PDF
    The effectiveness of interferon (IFN) therapy in malignant lymphoma is analyzed in this review. Although various treatment regimens including IFN at various dose levels have so far not proved to have curative potential, a substantial palliative effect has been noted in hairy-cell leukemia and in some non-Hodgkin lymphomas of low-grade malignancy. Early stages of lymphoma disease are more responsive to IFN therapy, and this holds true also for chronic lymphocytic leukemia, in which IFN treatment is usually not effective in progressed disease after chemotherapy. Concepts of early-phase treatment and of remission maintenance by using IFN therapy are discussed on the basis of the data from several studies

    Constitutive monocyte-restricted activity of NF-M, a nuclear factor that binds to a C/EBP motif

    No full text
    In a search for monocyte-specific nuclear factors, we analyzed in human cells the promoter of the chicken myelomonocytic growth factor, a gene that, in the chicken, is expressed in myeloid and myelomonocytic cells. Reporter gene constructs were active in monocytic Mono Mac 6 cells and in monoblastic THP-1 cells but not in the hematopoietic stem cell line K562. When a region with homology to the sequence recognized by CAAT enhancer-binding proteins (C/EBP) was inactivated by site-directed mutagenesis, the reporter activity was reduced by a factor of 10. Multimers of this region, termed F, in front of a heterologous promoter were active in Mono Mac 6 and THP-1 cells but not in K562 cells, WIL2 B cells, BT20 mammary carcinoma cells, MelJuso melanoma cells, or SK-Hep-1 hepatoma cells. Gel shift analysis with the F oligonucleotide identified DNA-binding activity in monocytic Mono Mac 6, monoblastic THP-1, and myelomonocytic HL60 cells. No binding was detected in myelomonocytic RC2A cells, in myeloid KG-1 cells, or in the hematopoietic stem cell line K562. Furthermore, a panel of solid tumor cell lines, representing various tissues, were also negative. Stimulation by PMA could not induce this binding factor in any of the negative cell lines. Analysis of primary cells (granulocytes, T cells, monocytes, and alveolar macrophages) revealed binding activity only in monocytes and macrophages. This DNA-binding factor, termed NF-M, was found to consist of two molecules, of 50 and 72 kDa, as determined by affinity cross-linking. Binding of NF-M was competed by the region F oligonucleotide and by the C/EBP motif from the albumin enhancer but not by an AP-2 motif. These data suggest that NF-M is a member of the C/EBP family of nuclear factors. The monocyte-restricted activity of NF-M suggests that this nuclear factor may be involved in regulation of monocyte-specific genes

    All-trans retinoic acid-induced downregulation of annexin II expression in myeloid leukaemia cell lines is not confined to acute promyelocytic leukaemia

    No full text
    Most acute promyelocytic leukaemia (APL) patients suffer from disordered haemostasis. APL can be treated successfully in most instances by all-trans retinoic acid (ATRA) therapy, which induces endpoint maturation of the leukaemic promyelocytes with the characteristic t(15;17). Annexin II (AnII), a profibrinolytic protein, has been implicated in the bleeding manifestation seen in APL. Our group has shown previously that high levels of AnII are expressed on other acute myeloid leukaemia subtypes that are sometimes associated with disordered haemostasis, albeit less frequently than APL. This study examined the effects of ATRA on AnII expression and cell differentiation, on myeloid leukaemia cell lines to determine whether a regulatory influence on AnII may contribute to the return of haemostatic stability in APL following treatment. The results confirmed that AnII expression in the APL cell line (NB4) was significantly downregulated in response to ATRA (P < 0·01), with associated morphological and immunophenotypical evidence of myeloid differentiation. ATRA also downregulated AnII expression on other myeloid cell lines, albeit to a lesser extent than observed on NB4 cells. The results provide evidence that ATRA may resolve the hyperfibrinolysis in APL by downregulation of AnII expression

    Highly purified lipopolysaccharides from Burkholderia cepacia complex clinical isolates induce inflammatory cytokine responses via TLR4-mediated MAPK signalling pathways and activation of NFκB

    No full text
    In cystic fibrosis (CF), bacteria of the Burkholderia cepacia complex (Bcc) can induce a fulminant inflammation with pneumonitis and sepsis. Lipopolysaccharide (LPS) may be an important virulence factor associated with this decline but little is known about the molecular pathogenesis of Bcc LPS. In this study we have investigated the inflammatory response to highly purified LPS from different Bcc clinical isolates and the cellular signalling pathways employed. The inflammatory response (TNFα, IL-6) was measured in human MonoMac 6 monocytes and inhibition experiments were used to investigate the Toll-like receptors and associated adaptor molecules and pathways utilized. LPS from all clinical Bcc isolates induced significant pro-inflammatory cytokines and utilized TLR4 and CD14 to mediate activation of mitogen-activated protein kinase pathways, IκB-α degradation and NFκB activation. However, LPS from different clinical isolates of the same clonal strain of Burkholderia cenocepacia were found to induce a varied inflammatory response. LPS from clinical isolates of Burkholderia multivorans was found to activate the inflammatory response via MyD88-independent pathways. This study suggests that LPS alone from clinical isolates of Bcc is an important virulence factor in CF and utilizes TLR4-mediated signalling pathways to induce a significant inflammatory response. © 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Ltd

    Effects of Herpes Simplex Virus Amplicon Transduction on Murine Dendritic Cells

    No full text
    The herpes simplex virus (HSV)-based amplicon is a versatile vaccine platform that has been preclinically vetted as a gene-based immunotherapeutic for cancer, HIV, and neurodegenerative disorders. Although it is well known that injection of dendritic cells (DCs) transduced ex vivo with helper virus-free HSV amplicon vectors expressing disease-relevant antigens induces antigen-specific immune responses, the cellular receptor(s) by which the amplicon virion gains entry into DCs, as well as the effects that viral vector transduction impinges on the physiological status of these cells, is less understood. Herein, we examine the effects of amplicon transduction on mouse bone marrow-derived DCs. We demonstrate that HSV-1 cellular receptors HveC and HveA are expressed on the cell surface of murine DCs, and that HSV amplicons transduce DCs at high efficiency (>90%) with minimal effects on cell viability. Transduction of dendritic cells with amplicons induces a transient DC maturation phenotype as represented by self-limited upregulation of MHCII and CD11c markers. Mature DCs are less sensitive to HSV amplicon transduction than immature DCs regarding DC-related surface marker maintenance. From this and our previous work, we conclude that HSV amplicons transduce DCs efficiently, but impart differential and transient physiological effects on mature and immature DC pools, which will facilitate fine-tuning of this vaccination platform and further exploit its potential in immunotherapy
    corecore