396 research outputs found

    Iterative decoding with imperfect channel estimation for wireless systems.

    Get PDF

    Water use efficiency of China\u27s terrestrial ecosystems and responses to drought

    Get PDF
    Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China’s terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg−1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. “Turning-points” were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity

    Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield

    Get PDF
    There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of increasing vegetation greenness particularly afforestation on the hydrological cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China\u27s land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation \u27greening\u27 and \u27browning\u27 on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield, while vegetation browning reduced ET and increased water yield. At the large river basin and national scales, the greening trends also had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the changes in vegetation greenness on the hydrological cycle varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrological cycle are needed to account for the feedbacks to the climate

    Thermal-Diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Full text link
    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in white dwarfs. The numerical critical Zel'dovich numbers of planar flames at different densities (ρ=2\rho=2, 3 and 4×107\times 10^7~g/cm3^3) and of spherical flames (with curvature c=c=-0.01, 0, 0.01 and 0.05) at a particular density (ρ=2×107\rho=2\times 10^7~g/cm3^3) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2×107 g/cm32\times10^7~{\rm g/cm^3} and temperature of 0.6×109 K0.6\times 10^9~{\rm K}. While being stable at higher temperatures, at relatively lower temperatures the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.Comment: ApJ, 841, 21 (2017), 25 pages in arxiv versio
    corecore