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Abstract

In this thesis, we propose a new iterative algorithm for tu rbo  decoding with integrated 

channel estim ation for Rayleigh flat-fading channels. The design of the  proposed algorithm 

is based on a new tu rbo  decoding metric for binary phase-shift keying (BPSK) signaling 

on fast fading Rayleigh channels with noisy channel estimates. The algorithm  consists of a 

channel estim ator th a t can reduce the error variance of the channel estim ate iteratively by 

using the soft extrinsic information outpu t from the tu rbo  decoder. The extrinsic informa­

tion generated from the tu rbo  decoder has some a priori information of the  transm itted  data  

symbols which can be used to  refine the  channel estim ate after each iteration of decoding. 

The refined channel estim ate is then  fed back to  the tu rbo  decoder for the next iteration 

of decoding. The resulting iteration between the channel estim ator and th e  tu rb o  decoder 

using the new metric, with interm ediate exchange of soft channel-symbol information, yields 

very impressive results. Simulation results verify th a t the proposed algorithm can outper­

form conventional algorithms significantly and even its performance can approach th a t of a 

tu rbo  decoding algorithm  with perfect knowledge of the channel.

In most existing tu rbo  decoding algorithms for fading channels, the received da ta  sym­

bols are multiplied by the  complex conjugate of an estim ate of the channel gain before 

tu rbo  decoding w ithout any m athem atical justification. However, in this thesis, we prove 

th a t the  result of this kind of preprocessing (or filtering) operation on the received signal 

to  compensate the effect of fading distortion can be viewed as a method to obtain linear

iv
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A B STR A C T

minimum-mean-square-error (MMSE) estim ates of the  transm itted  d a ta  symbols.

We also study the effect of signal-to-noise ratio (SNR) mismatch on th e  bit-error ra te 

(BER) performance of tu rbo  decoding algorithms. According to  the previous results ob­

tained by other researchers, turbo-decoding with the Max-Log-MAP decoder is independent 

of SNR for Rayleigh fading channels when the channel is assumed to  be perfectly known to 

the  receiver. Using such an assumption, the Rayleigh fading channel may then be viewed 

as an additive white Gaussian noise (AWGN) channel conditioned on the fading coefficient. 

Since in practical communication systems, the channel information is not available at the 

receiver, the  channel must be estim ated at the receiver. Because of the  low signal to  noise 

ratios typical of tu rbo  coded systems, it is difficult to  obtain perfect estim ates of the fading 

coefficients. Thus, we show th a t the  Max-Log-MAP decoder is sensitive to  SNR mismatch 

over fading channels with noisy channel estimates. Also, it is shown th a t th e  Max-Log-MAP 

decoder is less sensitive to  SNR mismatch th an  the MAP or Log-MAP decoder.

Finally, we propose a new SNR mismatch model to  examine the sensitivity of tu rbo  

decoding algorithms to  SNR mismatch for systems with an SNR estim ator. This model is 

more practical th an  the conventional one. Under this model, we still can verify th a t the 

Max-Log-MAP decoder is sensitive to  SNR mismatch over fading channels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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C hapter 1

Intoduction

1.1 Turbo (iterative) decoding algorithms

Turbo codes with iterative decoding algorithm (MAP algorithm) were introduced by Berrou 

and Glavieux in 1993 [3]. After introduction of tu rbo  codes, a lot of research has been 

conducted on the structu re of the tu rbo  encoder and tu rbo  decoder.

In [6], the trellis term ination of tu rbo  encoder and extrinsic information generated by 

the  tu rbo  decoder have been described thoroughly by Robertson. The same author in [7] 

introduced two kinds of the  maximum a posteriori (MAP) algorithms, the  Log-MAP and 

Max-Log-MAP decoding algorithms. The performance of the MAP decoding algorithm has 

been proved to be remarkably well over additive white Gaussian noise (AWGN) channels [3]. 

Since the MAP algorithm is very complex, the Log-MAP and Max-Log-MAP decoding 

algorithms have been introduced to  solve this problem. The Log-MAP algorithm operates 

in the logarithmic domain and reduces the  number of additions and multiplications in the 

decoding process while its performance is the  same as th a t of the MAP decoder. The Max- 

Log-MAP algorithm further reduces the com putational complexity by approxim ating all the 

non-linear functions in the Log-MAP algorithm with the linear functions. The performance 

of the Max-Log-MAP algorithm is suboptim al compared to  th a t of the  Log-MAP algorithm.

1
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1. INTODUCTION

In [5], Sklar summarized the ideas behind turbo  decoding. He discussed the  component 

codes and the interleaver in the tu rbo  encoder. He also derived the  channel reliability 

factor L c for tu rbo  decoding algorithms over AWGN channels. It was shown th a t the 

channel reliability factor depends on SNR in this case.

The performance of tu rbo  decoding algorithms over fading channels has also been studied 

since tu rbo  decoding algorithms have been introduced. In [16], Barbulescu assumed the 

fading am plitude and phase are known at the  receiver and the channel reliability factor 

L c for this case depends on the SNR and the  fading am plitude. In [18], Hall and Wilson 

assumed only the phase of the fading is known at the receiver and studied the decoding 

process. In [19], the same authors studied the  decoding process when the fading am plitude 

is assumed to  be known at the receiver. In [12], Frenger derived a new tu rbo  decoding 

metric over fading channels by considering the uncertainty of bo th  fading am plitude and 

phase. Frenger also indicated th a t if the transm itted  bits experience fading distortion with 

imperfect channel estimation, the  channel reliability factor L c depends on both  SNR and the 

error variance of the  channel estimate. In [12], using com puter simulations, Frenger proved 

th a t tu rbo  decoding based on his new metric outperforms the  m etric w ithout considering 

the error variance of the channel estimate. He also showed th a t Log-MAP decoder can 

achieve better bit error ra te  (BER) performance with smaller error variance of channel 

estimate.

Turbo decoding over AWGN channels needs SNR [5], and tu rbo  decoding over fading 

channels needs both  SNR and channel fading factor [16], Practically, neither SNR or fading 

factor are known at the receiver. A lot of research thus has been done on SNR and channel 

estim ation schemes for tu rbo  decoding. In [28] and [35], SNR and channel(fading) estimation 

schemes for tu rbo  decoding have been discussed. All these estim ation schemes can be 

classified into three categories: pilot-assisted channel estim ation, blind channel estimation, 

and hybrid channel estim ation. The pilot-assisted and blind channel estim ation methods 

have been discussed in [36] and [37], respectively. The hybrid channel estim ation scheme 

combines two schemes. Most of the  proposed m ethods perform channel estim ation without 

any feedback from the  tu rbo  decoder, [33] and [34]. In [23], an iterative channel estimation

2
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1. INTODUCTION

scheme is introduced which uses the extrinsic information generated from the  tu rbo  decoder. 

Later, more work was done on the iterative channel estim ation in [24].

1.2 A  new algorithm  for turbo decoding w ith  channel esti­

m ates

In this thesis, we propose a new tu rbo  decoding algorithm for BPSK signaling on Rayleigh 

flat-fading channels w ith noisy channel estimates.

Conventional channel estim ators for tu rbo  decoding have no feedback from the tu rbo  

decoder and ignore the extrinsic information generated from the tu rbo  decoder. While, the 

extrinsic information can be fed back to  the channel estim ator to  refine its previous estimate. 

In [23], Valenti proposed a turbo  decoding algorithm with integrated pilot-assisted channel 

estim ator without using the tu rbo  decoding metric proposed by Frenger in [11]. In [23], 

Valenti used the channel reliability factor L c derived by Barbulescu in [16] and tried to 

re-estim ate the fading factor and thus derived a new L c. However, the reliability factor 

derived by Barbulescu was based on the assum ption th a t bo th  the  am plitude and phase 

of fading are perfectly known at the  receiver. Since in practical communication systems, 

the  channel information is not available at the receiver, the  channel must be estim ated at 

the  receiver. Because of the low signal to noise ratios typical of tu rbo  coded systems, it is 

difficult to  obtain perfect estimates of the fading coefficients. Hence, for fading channels 

with noisy channel estim ate, we will use the channel reliability factor L c derived by Frenger 

in [11],

Then, using a modified version of the channel reliability factor L c derived by Frenger, 

we propose a new iterative algorithm for tu rb o  decoding with integrated channel estim ation 

for Rayleigh flat-fading channels. Further, we use the hybrid channel estim ation scheme 

in the  proposed algorithm. For the  first iteration, a pilot-assisted channel estim ator is 

assumed to  provide us with the  initial channel estim ate and its error variance. After each 

iteration of decoding, a blind linear MMSE (minimum mean square error) channel estim ator 

refines the  channel estim ate and its error variance by using the  extrinsic information fed

3
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1. INTODUCTION

back from the tu rbo  decoder. The refined channel estim ate is then sent back to  the Log- 

MAP turbo  decoder for the next iteration of decoding. This way, in the blind channel 

estim ator, we may reduce the  error variance of the channel estim ate iteratively by using 

the a priori information of the d a ta  bits buried in the  extrinsic information. Finally, the 

resulting iteration between the channel estim ator and the tu rbo  decoder, with interm ediate 

exchange of soft channel-symbol information, can improve th e  performance of both  the 

channel estim ator and the  channel decoder.

1.3 Preprocessing (fading com pensation) for turbo decoding

In practical systems, in order to  undo the effect of fading, the received d a ta  symbols are 

multiplied by the complex conjugate of an estim ate of the channel gain before tu rbo  de­

coding, [44], Since there has been no m athem atical justification in the  literature for this 

kind of fading compensation for systems without perfect knowledge of the channel, we try  

to  come up with some justification. First, we derive a linear MMSE estim ator to obtain 

optimal estim ates of the transm itted  da ta  symbols with noisy channel estimates. Then, it is 

shown the linear MMSE estim ator can be viewed as a normalized version of the  preprocess­

ing (fading compensation) operation used in most existing tu rbo  decoding algorithms, [11]. 

Also, we show th a t the normalization has no effect on the  BER performance of the  tu rbo  

decoder.

1.4 Effect of SNR  m ism atch on BE R  performance

One requirement of the  Log-MAP tu rbo  decoder over fading channels is the knowledge 

of SNR and the error variance of channel estimate. Since the proposed tu rbo  decoding 

algorithm composed of the Log-MAP decoder, both  the channel SNR and the channel 

fading must be estim ated. Adding any estim ator to  this algorithm increases the complexity 

of the algorithm. Therefore, any decoding algorithm th a t does not need perfect knowledge 

of SNR or fading factor is more desirable. The effect of SNR mismatch on the performance 

of tu rb o  decoding algorithms over AWGN channels has been discussed in [29] by Jordan

4
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1. INTODUCTION

and Nichols. In [30] and [28], the effect of SNR mismatch over the fully interleaved channels 

has been discussed. Valenti and W oerner further discussed the effect of SNR mismatch over 

correlated fading channels in [27]. In [9], Worm indicated th a t Max-Log-MAP tu rbo  decoder 

is insensitive to SNR mismatch over AWGN channels and fading channels. However, this 

result is valid for the Max-Log-MAP tu rbo  decoding over AWGN channels. Whereas, for 

the  Max-Log-MAP tu rbo  decoding over fading channels, it was assumed the  fading factors 

are known at the  receiver. Using such an assumption, the  Rayleigh fading channel may 

then be viewed as an AWGN channel conditioned on the fading coefficient. However, for 

fading channels w ith imperfect channel estim ation, the error variance of channel estim ate 

must be included in the  channel reliability factor L c, [12].

In this thesis, we study the sensitivity of the Log-MAP and Max-Log-MAP algorithms 

to  SNR mismatch over fading channels by using the channel reliability factor L c derived 

in [12]. We show th a t both  the Log-MAP and Max-Log-MAP decoder are sensitive to  

SNR mismatch over fading channels when the  channel is not perfectly known. However, we 

find the  Max-Log-MAP decoder is less sensitive to  the SNR mismatch th an  the Log-MAP 

decoder.

1.5 A New  SN R  m ism atch model

At last, we also propose a new SNR mismatch model. The new SNR mismatch model is 

more practical th an  the  conventional model used in the literatures. The conventional model 

considers all the d a ta  frames experience the  same SNR mismatch offset at a given SNR. In 

the  new model, we consider the SNR mismatch is a random  variable and different frames 

experience different SNR mismatch. Under the new model, we can still verify th a t both 

Log-MAP and Max-Log-MAP decoder are sensitive to SNR mismatch over fading channels 

when the channel is not perfectly known.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1.6 Organization of the thesis

The organization of this thesis is as follows. In C hapter 2, the channel models are introduced. 

In C hapter 3, the tu rbo  encoder and tu rbo  decoding algorithms are described. In C hapter 

4, we propose a new Log-MAP tu rbo  decoding with integrated with channel estimation 

over fading channels. In C hapter 5, the  preprocessing or fading com pensation is discussed 

from the  estim ation theory point of view. In C hapter 6 , the  effect of SNR mismatch on the 

performance of tu rbo  decoding algorithms is investigated. In C hapter 7, simulation results 

are presented and also we introduce a new model to  study the  effect of SNR mismatch 

on th e  BER performance of tu rbo  decoding algorithms. Finally, conclusions and future 

research directions are given in C hapter 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 2

Channel Models

To design the channel estim ator and analyze the  effect of SNR m ismatch on the  performance 

of tu rbo  decoding algorithms, we have to  understand the channel th a t the  transm itted  

d a ta  bits experiences. In this thesis, we need two kinds of channel models to  discuss our 

contributions. In th is chapter, we first introduce additive white Gaussian noise (AWGN) 

channel model, and then  fading channel model.

2.1 AW GN channels

The additive white Gaussian noise (AWGN) channel model together w ith binary phase shift 

keying (BPSK) m odulator is depicted as in figure 2.1. W here dk G (0,1) are the transm itted  

da ta  bits, x k G { — \ fE l , \ fE s )  are BPSK symbols, n k are the additive white Gaussian noise

and y k are received symbols. In AWGN channel models, a AWGN noise n k is added to  the

transm itted  symbols x k. Here, n k are comp lex-valued and Gaussian distributed random  

variables. The mean and variance of n k are

E[nk} = 0,

E[\nk \2} = 2a2n = N 0. (2.1)

7
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2. CHANNEL MODELS

BPSK

A W G N  nk

x± —

y t  =  x *  +  * *

Figure 2.1: AWGN channel model

The signal to  noise ratio (SNR) for this case is

Eb E s
(2 .2 )

N 0 R x 2 a 2 ’

where R  is the coding ra te  and E s = Eb x R. E s is the transm itted  symbol energy and Eb 

is the source bit energy. The received symbols yk are

y k = x k + n k. (2.3)

For communication systems over AWGN channels, at the receiver, we need to  know the 

signal to  noise ratio. Normally, the symbol energy E s is set to  1 and the  coding ra te R  is 

known. The noise variance No is the only value we need to  estim ate to  get the  SNR.

2.2 Fading channels

For wireless communications, the transm itted  da ta  bits will experience a much more compli­

cated channel th an  AWGN channel. Due to  the complex environments between the wireless 

communication term inals (buildings, forests and vehicles) and movement of the  terminals, 

the transm itted  d a ta  bits will be affected by unpredictable errors. Normally these errors are 

called channel fading. And the wireless channels are usually modeled as fading channels. 

Channel fading can be classified into two categories:

•  Large-scale fading

•  Small-scale fading

8
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2. CHANNEL MODELS

In [40], it has been mentioned “Large-scale fading is caused by reflection, diffraction and 

scatting o f the signals when they are obstructed by buildings, forests and vehicles”. This 

type of fading usually reflects a long period of channel characteristics.

Small-scale fading, or simply fading, on the other hand reflects a short period of channel 

characteristics. Small-scale fading is caused by the  m ultipath interference waves and the 

movement of the wireless terminals. The m ultipath interference waves are the different 

versions of the transm itted  d ata  bits arriving at the receiver at different times. The sum of 

the  m ultipath waves at the receiver will result in a received signal which can varies widely 

in am plitude and phase. The movement of the term inals will also introduce channel errors. 

In this thesis, we only use the small-scale fading channel model. Below, we will only talk 

about the small-scale fading.

2.2.1 Type of small-scale fading

The type of small-scale fading depends on the  two im portant factors in the  wireless commu­

nication channels: m ultipath delay and Doppler spread. M ultipath delay is introduced by 

m ultipath interference waves. Doppler spread is introduced by the  movement of the  wireless 

term inals. In this thesis, we only briefly introduce the fading types, for detail, see the  book 

by Stiiber, [40].

•  Fading types due to  m ultipath delay

M ultipath delay causes the transm itted  signal to  experience either flat or frequency 

selective fading.

If the transm itted  d a ta  bits period is greater than  the m ultipath delay, the transm itted  

d a ta  bits will experience a flat fading. On the other hand, if the d a ta  bits period is shorter 

th an  the m ultipath delay, the d ata  bits will experience a frequency selective fading.

•  Fading types due to  Doppler spread

Doppler spread causes the transm itted  signal to experience either slow or fast fading.

If the  signal bandw idth is much greater than  the  Doppler spread, the  transm itted  bits 

will experience a slow fading. If the  signal bandw idth is smaller th an  or close to  the  Doppler 

spread, the transm itted  bits will experience a fast fading.

9
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ak AWGN nk

BPSK

y*  =«»■*»+»*

Figure 2.2: Fading channel model

Two kinds of fading classification are independent.

2.2.2 Fading channel model in this thesis

The fading channel model used in this thesis is a small-scale flat fading channel. The 

Rayleigh fading model is the most common channel model used to  describe the  flat fading 

channel. The fading channel model together with the BPSK m odulator is depicted as 

Fig 2.2. Compared with the  AWGN channel model, the multiplicative fading factors a* 

are added. The fading factors are complex-valued and Gaussian distributed random  

variables. The mean and variance of a*, are

We assume a*. and n*, are independent and the  the variance of the received bits y & are:

And th a t is why this fading channel model is called Rayleigh fading channel model.

For communication systems over Rayleigh fading channels, a t the receiver, we need 

both  signal to  noise ratio  and the fading factors. Fading channels are more complex to

E[ak] = 0, 

E[\ak |2] =  2a\. (2.4)

(2.5)

The am plitude \a^\ has a Rayleigh distribution with pdf

(2 .6)

10
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analysis than  AWGN channels because we need to  estim ate the fading factors. There are 

many channel estim ation schemes. They can be classified into three categories: pilot- 

assisted channel estim ation, blind channel estim ation and hybrid channel estimation. In 

the  proposed new metric in this thesis, we use the hybrid channel estimation.
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C hapter 3

Turbo Codes with Iterative Decoding  

Algorithms

3.1 Channel coding

The fading and AWGN noise induced by channels will affect the transm itted  d a ta  bits a 

lot. At the receiver, it is very hard to  recover what have been originally sent out. Channel 

coding is an effective m ethod for deducing the effects introduced by channels.

There are many different types of error control codes, bu t they can be classified into 

block codes and convolutional codes. In [40], it has been mentioned th a t  “Both block codes 

and convolutional codes are used in the mobile radio systems. Some second generation digital 

cellular standards (e.g., GSM, IS-54) use convolutional codes, while others (e.g., PDC) use 

block codes”.

Block codes can detect and correct a limited number of errors. The detecting and 

correcting error ability of the block codes depends on the code free distance. Traditional 

block codes include Hamming codes, BCH codes, Reed-Solomon codes etc. Hard decision 

block decoders are easy to  implement.

Convolutional codes are different from block codes. Instead of grouping the  data  bits

12
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3. TURBO CODES W ITH  ITE R A TIV E  DECODING ALGORITHMS

into blocks and then  encoding, convolutional codes use linear finite shift registers (LFSR) 

to  encode the d a ta  bits sequence. Convolutional codes outperform  block codes. The most 

common decoding algorithm for convolutional codes is Viterbi algorithm.

Turbo codes, introduced by Berrou and Glavieux in 1993 [3], also known as parallel 

concatenated recursive systematic convolutional codes, can outperform  most codes.

3.2 Turbo codes

Turbo codes with iterative decoding algorithm (MAP algorithm) were introduced by Berrou 

and Glavieux in 1993 [3]. The tu rbo  encoder in [3] consists of two RSC encoders, a random  

interleaver and a multiplexer. The multiplexer concatenates the  outputs from the  two 

RSC encoders and sends them  out serially. W hat makes tu rbo  code different from other 

channel codes is its special decoding algorithms. The tu rbo  decoder in [3] consists two 

MAP decoders. Two MAP decoders generate and exchange the extrinsic information. The 

decoding process runs several times to  obtain a b etter BER performance.

3.3 Turbo encoders

The tu rbo  encoder in [3] consists of two recursive systematic convolutional (RSC) codes 

encoders. A simple binary code ra te 1/2 RSC codes encoder with code memory 4 is depicted 

in Fig. 3.1, where the  bits in the  memory u k is recursively calculated as

3

^ k  ~  dk  -f ^  (^*1)
i=0

The corresponding codeword is the bit pair (d|,d]() 

d/; =  dfc ,
3

dpk = dk + ^ g u i i k - i ,  m o d i  52; =  0,1 (3.2)
i=0

where gn = (11111) and c/2i =  (10001) are the code generators. They can also be expressed 

in octal notation as gn = 37 and gn = 21.

13
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U /

Figure 3.1: RSC codes encoder
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Encoder 2
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Encoder 1
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Figure 3.2: Turbo codes encoder
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AWGN

BPSKTurbo encoder Turbo decoder

y t = xt + nk Decision

Xk  ̂ V \  }

Figure 3.3: System model over AWGN channels

3.3.1 Concatenation of RSC codes encoders

The tu rbo  encoder in [3] is shown in Fig. 3.2. The source d ata  bits are sent to  the  first RSC 

codes encoder. The interleaved version of d a ta  bits will be sent to  th e  second RSC codes 

encoder. The codewords are dsk , dpk l  and dpk 2, where dsk are source d a ta  bits and dFk l ,cPk 2  are 

the parity bits from the  first and second RSC encoder respectively. The code ra te  for this 

tu rbo  encoder is R  = 1/3, the ou tput sequence from the  multiplexer is {dsk ,cPk v <Pk 2 • • • }. 

For higher code rate, we can add a switch to  puncture the codeword. For example, for 

R  = 1/2, the  output sequence from the  multiplexer is {dsk, cPk 1; dsk+1, dpk+l 2 • • • }.

However, this is not th e  only construction of the tu rbo  encoder. In [4], the tu rbo  encoder 

can consist of N  RSC encoders, the coding ra te  for th a t system  will be 1/N .  Also in [14] 

and [15], it has been indicated th a t the component codes of tu rbo  encoder can be any block 

codes and convolutional codes, not only RSC codes. Different design of tu rbo  codes encoder 

will result in different codes performance and decoding complexity.

3.4 Turbo decoding algorithm s over AW GN channels

The tu rbo  codes system over AWGN channels is depicted in Fig. 3.3. Maximum a poste­

riori probability (MAP) decoding algorithms is the optimal algorithm for tu rbo  decoding. 

However, since its complexity, it is not practical to  be implemented. Log-MAP and Max-

15
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Log-MAP decoding algorithms have been introduced to  make the  im plementation practical. 

Below, we discuss the detail of these decoding algorithms over AWGN channels and fading 

channels.

3.4.1 M AP algorithm over AW GN channels

The optimal sequence decoding algorithm for convolutional codes is V iterbi algorithm. 

V iterbi algorithm is a very simple decoding algorithm and its decoding process depends 

on the  standard  of maximizing a posteriori probability of a sequence received bits. MAP 

algorithm, on the other hand, tries to decode the  received d a ta  bits depending on maximiz­

ing a posteriori probability of each received bit. Viterbi algorithm is a sequence decoding 

algorithm and MAP algorithm is a bit-by-bit decoding algorithm. The MAP algorithm is 

discussed thoroughly in [1] and [3], bellow we try  to  explain the fundamentals.

In the MAP decoder, we need to  calculate the a posteriori probability (APP) of each 

received bit. For binary phase shift keying (BPSK), the transm itted  bits can only be 0 or 1, 

so we need to calculate two A PP P r { d k =  i /  observations}, i =  0,1. The decoder decision 

depends on:

dk =  1 i f  Pr{dk  = 1 / observations}  >  Pr{dk = 0 /observations},

dk =  0 i f  Pr{dk  = 1 / observations} < Pr{dk = 0/ observations}.  (3.3)

The observations are the received bits. We assume the  frame size is N  and the observations

are the  received bits from 1 to N , noted as R ^ , Rk  =  {VkiVk}- "Phe APP* can be expressed

as

Pr{dk = i / R \ }  * =  0,1 (3.4)

The A PP can be derived from the joint probability:

P r { d k = i / R i }  =  ^ T P r { d k = i , S k = m / R ? } ,
m

-  EE P r { d k = i , S k — m , S k - i = m ' / R x } .  (3.5)
m m,'

where S k is the encoder trellis state  at tim e k  and S k~i is the  encoder trellis s ta te  at time 

k  — 1, m  and m! are the possible states. Using the  Bayes’ rule, the A PP can be expressed

16
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as

P r { d k = i /R % }  = —  1 EE P r { d k = i, S k = m,  S k _ 1 = to ', P f } .  (3.6)
*- 1 -* m  rri

Further, if the trellis s ta te  S k is known, the trellis s tate  and received bits after tim e k  are 

not affected by observation R \  and bit dk. Using the  Bayes’ rule, the  A PP can be expressed 

as

P r { d k = i / R i }  = ~ j ^ Y l l E P r U k  = h s k = 'rri,Sk_ l = m /, R k1~ l , R k,R$r+1}
f  1 ■* m m l

=  P r { R N \  ^  ^  P r { R L i / S k  = m }t 1 J rn m!
x P r { d k = i, S k = m , S k^i  =  to ', P ^- 1 , R k}

1 E E P r { 4 A  =  ™}P r { P f }

x P r { d k = i , S k = m,  R k/ S k„i =  m ' } P r { S k_i  = to ', P * -1 } (3.7)
m  m '

J  ryk—l i

In [1], three probability functions have been defined to  help the  calculation of the  APP:

a k{m) = P r { S k = m , R \ } ,

(3k(m) = P r { R ^ +1/ S k = m},

7i ( R k, m ' , m )  =  P r { d k = i, S k =  to, R k/ S k^i  =  m '}. (3.8)

where a k( m ), 0k(m),  and 7;(P&, m ', to) are called forward probability, backward probability,

and transition probability, respectively. By taking (3.8) into (3.7), we obtain

P r { d k = i / R = 'Yi(Rk , m ' , m ) a k_i(m')(3k (m)  (3.9)
1 ' m m '

As shown in [1], the a k( m ) and Pk(m)  can be recursively calculated by ~fi(Rk, m ' , m )  as

17
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follows:

a k{m) = P r { S k = m , R 1}
l

-  EE P r { d k =  i, S k_i = m ', S k =  to, R \ }
m ' i= 0 

1
=  ' Y L ' Y l P r {dk =  S k = m , R k, R \ ~ 1}

m ! i = 0
1

=  X X  P r i d k =  i , s k =  rn, R k/ S k^ i  =  m ' } P r { S k^ i  =  to ',  P j - 1 }
m'

1= EE T i ( R k , m ' , m ) a k_i(m')  (3.10)
m l 2 = 0

Pk(m)  =  =  to}
i

- EE
m' 2=0 

1
-  EE P r{ d fc+1 =  i, S k+1 =  to ', Pfc+i, R k+2 / S k = to}

m '  2 = 0

1
= X X  P r i dk + 1 =  ^  + 1 = TO'> -Rfe+l/^ = ™}-P»'{^f+2/S'fc+l = ™!}

m ! i= 0  
1

= EE ' ji (Rk+ i , m , m ,)pk+i ( m l) (3.11)
m l 2 = 0

The transition probability can be further separated into three terms:

7i (R k , m ' , m )  = P r { R k/ d k = i, S k = to, S k- i  = m ' } P r { d k = i, S k =  m / S k- i  =  to'}

=  P r { R k/ d k = i , S k = to, S k^ i  = m ' } P r { d k = i / S k =  to, S k_i = to'}

x P rlP fe =  m / S k - i  = to'}. (3.12)

The first term  in (3.12) depends on the  channel. In an AWGN channel, since th e  systematic

18
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d a ta  bits y sk are independent of the  trellis states:

P r { R k/ d k = i , S k = m , S k„ x = m '}  = P r { y k/ d k = i, S k = m,  S k- \  =  m'}

y~Pr{i/k/ d k = i , S k = m,  S k_ x =  m'}

= P r {yk/ dk = i}

x P r { y pk/ d k = i , S k = to, S k^ x =  to'} (3.13)

P r {yk/ dk = i}
i (yj-xi) ‘2

■ e 2<dl
rr Or,
1 (Vfc x)c)

P r { y pk/ d k = i , S k = m , S k- X =  to'} = - =  e 2<n> (3.14)
V 2 rran

The second term  of (3.12), P r { d k =  i / S k =  m , S k^ x — to '}, is 0 or 1 depending on the

trellis. The third term  of (3.12), P r { S k = m / S k^ x =  to '}, is 1/2 depending on trellis.

3.4.2 The modified M AP algorithm for turbo decoding

In [3], in order to use the MAP algorithm  in tu rbo  decoding, Berrou modified the original

MAP algorithm. Since BPSK signal only have two possible values, for simplicity, instead

of calculating each a posteriori probability, we calculate the log-likelihood ratio  (LLR) of 

the  a posteriori probabilities. The LLR can be expressed as

P r { d k =  I/observations}
m )  = log > U 4 = 0 M » en m t W T  (3-15)

At the decoder, after iteratively decoding, we can make a decision dk by comparing A(dk) 

to  a threshold equal to zero

dk =  1 i f  A(<4) >  0,

dk = 0  i f  A(dk) < 0. (3.16)

The LLR A(dk) can be expressed as the  function of three probabilities:

A W  =  log E "  ^
E m  E m ' 7o (Rk , m',  m ) a k_ x (m')pk (m)

19
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Figure 3.4: Turbo codes decoder

As indicated in [6], the LLR A (dk) can be further separated into th ree term s

Em Em' 7 i ( l / k , m \ m ) a k _ 1( j v / y h ( m )
A (dk) =  log

+  log D M E i z A  +  log
Prlv l/d ,  =  0} +  8 Pr{ ik ,  0} ’

L e{dk) + L c ■ y \  + L a{dk). (3.18)

where L e{dk) is the  extrinsic information generated from the decoder, L c ■ y sk represents the 

reliability value of the  channel, L c is called the  channel reliability factor and L a{dk) is the 

a priori information of the transm itted  bits. From equation (3.14), the  channel reliability 

factor L c for discrete memoryless Gaussian channels [5] is

4 \XE7
L r = N 0

(3.19)

The extrinsic information L e(dk) is independent of the channel reliability value L c ■ yk and 

the  a priori information L a(dk).

20
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3.4.3 Turbo decoder

The tu rbo  decoder in [3] is depicted in Fig. 3.4. In the decoder, a de-multiplexer first 

accepts the  serial received bits and parallel sends them  out. The received d a ta  bits yk 

and parity bits yk 2 are sent to  the first MAP decoder. The received parity  bits ypk 2 and 

interleaved version of the received d a ta  bits y k are sent to  the second MAP decoder.

In  the  first MAP decoder, for the first iteration of decoding, the  a priori probability 

L a,i{dk) is set to  0. The extrinsic information is derived as:

l £ } ( d k) = A {̂ \ d k) — L c -y k — L a,i(dk). (3.20)

The subscript 1 in L ^ \ ( d k) and A^ \ d k) represents the first decoder and the superscript 

(* =  1) represents the  first iteration of decoding. The subscript 1 in L ap{dk) represents 

the  a priori  probability of the first tu rbo  decoder. The channel reliability factor L c is

independent of the  number of iterations and decoder. This extrinsic information L ^ \ ( d k),

after interleaved, is sent to  the second MAP decoder. The second MAP decoder will take the 

extrinsic information L ^ \ [ d k) as the a priori  information of the  transm itted  d a ta  bits. In 

the  second MAP decoder, after decoding, a new extrinsic information is L^\{dk)  generated:

L ^ ( d k) = h ^ \ d k) - L c - y sk - L aa{dk),

=  k f i d ^ - L ^ - y i - L ^ d k )  (3.21)

The L ^ \ { d k), after de-interleaved, is fed back to  the  first MAP decoder.

For the  next iterations, the  first MAP decoder will take the  de-interleaved version of 

Tg*2 l \ d k) as the a priori information of the transm itted  d a ta  bits; th e  second MAP decoder 

will take the interleaved version of l\ d k) as the a priori information of the  transm itted  

d a ta  bits. The general formula for generating extrinsic information when the  num ber of 

iterations i >  1 are:

L {: \ ( d k) = h . f { d k) - L c - y { - L ^ l\ d k),

L % ( d k) = A ̂ ( d J - L c - y i - L ^ i d k ) .  (3.22)

The whole process runs iteratively for several times to  improve the performance.
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3.4.4 Log-M AP algorithm over AW GN channels

Log-MAP decoder does not change the way to  obtain the  extrinsic information. Log- 

MAP decoder changes the way to  calculate th ree probability functions a k ( m )  , /3k (m)  

and j i ( R k , m ' , m ) .  Instead of calculating three probabilities directly, Log-MAP decoder 

calculates them  in the  logarithmic domain.

7 il(yk>yk)’m , ’m } -  los(7 i ( R k , m ' , m ) ) ,  

a k( m ) A log(a!jfe(m)),

/? k(m) = log(Pk (m)).  (3.23)

Jacobian logarithm is used in [7] to  derive the Log-MAP algorithm. The Jacobian logarithm 

for two param eters is expressed as

ln(e'Sl +  e&2) = m a x { 5 i , 5 2 ) = max(5i ,  8 2 ) +  ln (l +  e_ l'52_'5ll). (3-24)

The Jacobian logarithm for more than  two param eters can be derived recursively from 

(3.24):

ln(ec?1 +  • • • +  eSn) = m a x ( S i , • • • , Sn )

= ln(A  +  eSn) wi th  A  =  eSl -) -f e15" -1 =  e&

=  max(5,  Sn ) +  ln (l +  e~^n_<̂ ) (3.25)

The S can derived from 5' =  l n ^ 1 +  • • • +  eSn~2) and so on.

The way to  derive the probabilities in logarithmic domain is out of range of this thesis. 

For detail, please see in [7]. Here, we use the same notation as in [7] and simply present the 

way to  calculate th e  three probabilities:

7 i[{ySk , yPk) ,m' ,m]  =  ^ L a{dk)x sk(i) +  ^ L cy skx sk{i) +  ^ L cypkx pk{i)

a k(m) = m a x { 7 i M ,^ ) ,m ',m ] +  5 ^ ( 171')}
(m'  ,i)

Pk(m ) =  max{7i[(2/A+i>^+i)>m >m /l +Pk+i{™')}(m'.t)
(3.26)

22
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We see 7 i{(ysk, y ^ ) , m ' ,m \  depends on the channel reliability factor L c, the a priori in­

formation L a(dk) and received bits. a k( m ) and /3k(m)  can be calculated recursively by 

7 i [(ysk , ypk) ,m ' ,m \  with non-linear max functions. These results are very im portant for the 

discussion of the contributions later.

The way to derive LLR A(dk) [7] is:

A(dk) =  Tnax -f a n ( m ' )
( 771,771' )

+0*(™)} -  m S r{ 70[(ysk , y pk) ,m' ,m]
( 771,771' )

+ a k^ l (m /) + Pk(m)}  (3.27)

The calculation of LLR also needs the  non-linear functions max.

3.4.5 M ax-Log-M AP algorithm over AWGN channels

The Log-MAP algorithm reduces com putational complexity, but it still has many nonlinear 

functions max. The Max-Log-MAP algorithm solves this problem by using approximations. 

The Max-Log-MAP decoder is deduced from the Log-MAP decoder by substituting the non­

linear functions max w ith the linear functions max.  The LLR A(dk) and probabilities can 

be expressed as

A(dk) =  max {7 1[ ( ^ , ^ ) , m / ,m] + a k_i(m')
(771,771' )

+Pk(m)}  -  max {70[(y*,*/£),to ',m ]
( 771,771' )

+ a k^ i (m ' )  +(3k{m)},  (3.28)

a k(m) = m ax{7i [ ( ^ , ^ ) , m /,m] + a k_ 1 (m')},
(Til' ,l)

Pk(m)  =  pax{7i[(y*+1,yfc+1) ,m ,m '}  + P k+1{m')}.
(Til' ,l)

(3.29)

The m ' , m] remains unchanged.
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Figure 3.5: System model over fading channels

3.5 Turbo decoding algorithm s over fading channels

The tu rbo  decoding algorithms over fading channels are similar with those over AWGN 

channels. In [12], it has been indicated th a t “when SN R is known, the decoding algorithms 

that are used for A W G N  channels remain unchanged and only the channel reliability factor 

L c needs to be redefined”. By including the tu rbo  decoder, fading channel model and tu rbo  

decoder, the system model over fading channels is depicted in Fig. 3.5.

In this thesis, we assume th a t an initial channel estim ation is available from a pilot-

assisted channel estim ator (channel estim ator 1). The initial channel estim ate hk is modeled

as in [12]

h k = ak + m k, (3.30)

where ak is the actual channel fading factor, m* is the channel estim ation error. The m * is 

a complex-valued Gaussian distributed random  variable with mean and variance

E[rnk] = 0,

E[\mk |2] =  2 a 2m. (3.31)
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We assume ak and m k are independent, the mean and variance of channel estim ate h k are

E[hk\ =  0,

E[\hk\2] =  2al  = 2 ( a l + a l ) .  (3.32)

By comparing the  system model over fading channels w ith th a t over AWGN channels, 

besides the fading factor ak and pilot-assisted channel estim ator, a new preprocessor is also 

added. This processor will be discussed in detail in chapter 5. In the preprocessor, with the 

received bits yk and initial channel estim ate h k available, we calculate the decision variables

Zk ~  Uk^k ~  zk r̂ j z k,ii (3.33)

where j  is the imaginary unit and zk r and zk % are the real and imaginary part of zk. In [12], 

the  cross correlation coefficient of yk and h k is defined as:

E[Vkh*k ]

x k

=  \y\e~jsk. (3.34)

Further, Frenger in [12] derived the probability of decision variable conditioned on the 

transm itted  bits as follows:

P r { z k/ d k} = - — ---- —  exp
2irazha^( l  -  \ y \ ^

^■[zkRk]
* • 1  d ^ 1 ’ ( 3 ' 3 5 )°v °>»(i -  H 2).

where K q { x )  is the  zeroth-order Hankel function of x,  and 5R[ar] is the  real component of x.

Over AWGN channels, when we derive the channel reliability factor L c, we use the 

probability of received d a ta  bits on the  transm itted  bits:

1
P r { y i / d k} =  — -  (3.36)

v27rcrn

and the  channel reliability factor L c is derived as:

j PriVk/dk  =  1} =  L s
g P r { y sJ d k =  0} cVk’

L c =  t g l .  (3.37)
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3. TURBO CODES W ITH  ITE R A TIV E  DECODING ALGORITHMS

Over fading channels, based on the analysis of conditional probability of decision variable 

Zk, the channel reliability factor for tu rbo  decoding algorithms over fading channels can be 

redefined as follows:

As seen, by assuming th a t the variance of fading factor a % is known, the  channel reliability 

factor L c over fading channels depends on both  SNR and the error variance of channel 

estim ate a

The way of the  Log-MAP and Max-Log-MAP decoding algorithms over fading channels 

will stay the same as over AWGN channels. There are only two modifications. The original 

received bits yk is replaced by the decision variables Zk and the  channel reliability factor L c 

is redefined as in (3.39).

P r j z k /d k  = 1} (3.38)

where

(3.39)
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C hapter 4

Turbo Decoding with Integrated Channel 

E stim ation

Log-MAP tu rbo  decoding algorithm over fading channels needs the information of SNR and 

the error variance of channel estim ate to  obtain the channel reliability factor L c. It has 

been proved in [12] th a t smaller error variance results in better BER performance. Many 

estim ation schemes have been introduced to  reduce the error variance of channel estim ate 

and thus improve the BER performance. Most of the schemes are processed before the 

s ta rt of the tu rbo  decoding. However, the extrinsic information generated and exchanged 

between the tu rbo  decoders has some a priori information of the  transm itted  d a ta  bits. 

This information can help us to  refine the  channel estim ate and reduce the  cr^ after each 

iteration of decoding.

In this chapter, we propose a new algorithm of tu rbo  decoding integrated with channel 

estim ation over fading channels. We use the Log-MAP tu rbo  decoder in our new algo­

rithm . And the  hybrid channel estim ation scheme is used to  refine the  channel estimation. 

We first review the estim ation theory in the mean-square-error sense. Then the working 

fundamentals of the channel estim ators are discussed.
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4. TURBO DECODING W ITH  INTEGRATED CHANNEL ESTIM ATION

4.1 Estim ation theory

Using the  theory of estim ation, we can derive an estim ator to  estim ate an unknown para­

m eter from our observations. Usually, in the estim ation process, we try  to  minimize a cost 

function. In the mean-square-error sense, the  cost function is

C[x, x\ = E[(x — x ) 2\, (4.1)

where x  is the unknown signal and x  is the  estimate. Given a collection of observations y, 

the  minimum-mean-square-error (MMSE) estim ator of x  given y  is given by, [42],

x  = E \ x \ y } = (  x f x\y{x\y), (4.2)
J s x

where Sx is the domain of x. The mean value of the estim ate and the  resulting minimum 

cost is given by

E[x\ = x,

E [ { x - x ) 2} = E [ x 2] - E [ x 2}. (4.3)

However, it is not always easy to obtain a closed form expression for the  MMSE estimator. 

This difficulty limits many engineers to the linear estimators. The linear MMSE estim ator 

and its minimum cost function or error variance can be expressed as

x  = x  +  K 0(y - y ) ,  

m in(£'[(x -  x )2]) =  R x -  R xyR ~ [R yx, (4.4)

where Ko is any solutions to  th e  equation K qR v =  R xy, and

R x = E[(x  -  x ) (x  -  x)*},

R xy =  E[{x - x ) ( y - y ) * ] ,

R yx = E [ { y - y ) { x - x ) * ) ,

R y =  E [ ( y - y ) ( y - y ) * ] .  (4.5)
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4. TURBO DECODING W ITH  INTEG RATED  CHANNEL ESTIM ATION

Fading channel

DEMUX

Delay

Channel 
Estimator 2

Preprocessor

Channel 
Estimator 1

Turbo Decoder

z « = * / r

Figure 4.1: Turbo decoding integrated with channel estim ation

4.2 A  new algorithm

In this thesis, we propose a new tu rbo  decoding algorithm  with integrated channel esti­

mation over Rayleigh fading channels as depicted in Fig. 4.1. The tu rbo  decoder used in 

this algorithm is a Log-MAP decoder. Comparing with th e  original Log-MAP decoder over 

fading channels, we have added the following blocks: a blind channel estim ator (channel 

estim ator 2), a de-multiplexer, and a delay module.

4.2.1 The first iteration of decoding

For the  first iteration, we assume there is a pilot-assisted channel estim ator (channel esti­

m ator 1) which provides us with the  initial channel estim ate hk and their error variance 

<7 .̂ This initial channel estim ate hk go through the channel estim ator 2 which is a blind 

linear MMSE channel estim ator w ithout any processing. After th a t, they are sent to  both  

the  preprocessor and a delay module. The error variance <r^ also goes through the channel
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4. TURBO DECODING W ITH  INTEGRATED CHANNEL ESTIM ATION

estim ator 2 and is sent to  both the  turbo  decoder and the delay module. The delay module 

reserves hk and cr^ for the  next iteration of channel estimation. In the tu rbo  decoder, after 

the first iteration of decoding, we have the first version of the extrinsic information L^\(dk)  

of the  transm itted  d a ta  bits. The de-interleaved version of the  extrinsic information L^X\(dk) 

from the  second Log-MAP decoder, instead of being fed back to  the  first Log-MAP decoder, 

is sent to  the  channel estim ator 2.

4.2.2 The next iterations o f decoding

For the next iterations, a de-multiplexer takes out the  received d a ta  bits y sk and sends them

to  th e  channel estim ator 2, the proposed estim ator. Depending on the reserved channel
(i— 1)estim ate h k and its error variance, the received data  bits y k and extrinsic information 

Lg*2 X\ d k ) ,  we refine the  channel estim ate for d a ta  bits h!~k and its error variance in the 

linear MMSE estim ator (channel estim ator 2). For simplicity, we use the  following notation:

A 4  a 2m. (4.6)

The refined error variance for iteration i and bit dk is The refined channel estim ate ĥ k 

and their error variance A ^ are again saved in the  delay module for the  next iteration of 

channel estimation. They are also sent to  the  tu rbo  decoder for this iteration of decoding. 

After decoding, we have an updated version of the  extrinsic information L^\{dk).  This 

information will be fed back to  the channel estim ator 2, the  proposed estim ator, for the 

next iteration of channel estimation. The whole process will run  iteratively. In following, 

we go into detail to  explain the process of exchanging information between the channel 

estim ator 2 and tu rbo  decoding.

The channel estim ator 2, depending on the received d a ta  bits y k , the  reserved channel 

estim ate for d ata  bits together with its error variance A^-1  ̂ and the  de-interleaved

extrinsic information L ^ 2 l\ d k ) ,  derives the  new channel estim ate of ak and its error 

variance

h ^  = K 0

30
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4. TURBO DECODING W ITH  INTEGRATED CHANNEL ESTIM ATION

Here we assign a* as m atrix 1 and
4 - »

as m atrix 2, then  K q can be expressed as

(4.8)

Vk

K 0 = R u R ^ 1,

where subscripts 1 and 2 are for m atrix 1 and 2, respectively. The error variance is

E[\mk |2] =  2 \ f  = R i  -  R n R'2 l R 2 i.

The correlation functions are 

Rx = E[aka*k] — 2 a\

(4.9)

R 12

i?21

R 2

E  I ak

E -
2 <(*%)*

[2°'a 2 a l ( x skr

E -
■A-1)

Vi

17i

' 1 2 (al  + \ % - ])) 2 a l ( x skr

yk J 2 a l x k 2 (a l \ x k \2 +  <7n) _
(4.10)

The new channel estim ate and its variance can then be expressed as

A )
l  +  A k 1 +

+
2A( i- l )

1,(0

N n ~x k Vk

0\ (l—1)
1 -L ,r s*
1 +  TVo k

(4.11)

(4.12)
1 -I- x(*^0/2_Bg i l l
L + A k (77o' +  ^ ) >

In (4.11) and (4.12), we see x k is in the equation. However, they are the  unknown tran s­

m itted d a ta  bits. W hat we have is the extrinsic information L ^ 2 l\ d k) for the d a ta  bits 

from the last iteration of tu rbo  decoding. We assign P r(d k = 1) =  P r ( x sk = +1) =  p, 

P r ( d k =  0) =  P r { x |  =  —1) =  1 — p, the extrinsic information from the  last

iteration of decoding will be used as the a priori information

=  loS Y 3 - (4.13)
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4. TURBO DECODING W ITH  INTEGRATED CHANNEL ESTIM ATION

so we have
exP [L e.2 1](dk)]

1 + e x p  [ L ^  {dk)}

The pdf of the transm itted  da ta  bits x sk can be expressed as

f x (x) = p S ( x sk -  1) + (1  ~ p ) S ( x sk + 1).

The mean value of the  transm itted  d a ta  bits x sk can be derived as

f  L {e 2 l\ d k)
E[x sk] =  / x f x {x) dx = 2p — 1 =  ta n h (— -------).

(4.14)

(4.15)

(4.16)

We try  to  approxim ate the new channel estim ate and its error variance by taking the 

expected value to  (4.11) and (4.12) on x sk as follows:

h (i) E xs [h(Oi 
k i' ' k J

1 4 .  \1 +  Ak { No

{ < - » ,+
N 0

■tanh(- )yt

and
/

x f  = E x l [ \(? } = 2 e ,(Oi
k L' k

2\ (i-i) r ( i - D

1 -
1 +  ^ - t a n h C ^ V ^ )

(4.17)

(4.18)

V 1 + h  ( i T o + I H j

Now, we save both  information in the delay module for the next iteration of channel esti­

mation. At the same time, the refined the channel estim ate ĥ k (only the  channel estim ate 

for d a ta  bits have been refined) are sent to the preprocessor to  derive the new decision

variables z (■i) .

,(0°k ~yk{h^k )*. (4.19)

The refined error variance A ^ are sent to  th e  tu rb o  decoder to  update th e  channel reliability 

factor:

4 °  ( 4 )
4 sfWs

No
- a „ A ? ( ~ a 2a +  1 ) +  a \

( 2  E s
(4.20)

k \ N o

For the  sake of comparison, we also show the channel reliability factor L c derived by Frenger, 

[1 1 ]:

4i/ E l  
No C

oL  ( +  1 ) +  of
\ N 0

(4.21)
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4. TURBO DECODING W ITH  INTEGRATED CHANNEL ESTIM ATION

We see in (4.21), the error variance a^  is the  same for all the  transm itted  bits. Also, the 

error variance <7  ̂ is estim ated before the  s ta rt of tu rbo  decoding. In the  new algorithm, 

however, each transm itted  bit has its own error variance A ^ , also the  error variance are 

re-estim ated after each iteration of tu rbo  decoding. The channel reliability factor L ^ \ d k )  is 

then updated after each iteration of decoding for each transm itted  bit. In the new algorithm, 

the  Log-MAP tu rbo  decoder is integrated with a blind channel estim ator to  improve the 

performance.

The inputs to  our proposed channel estim ator are the  channel estim ate from the  last
(i—1) H— 1)iteration h\  and its error variance \ \  , the received d a ta  bits ysk and extrinsic informa­

tion from the last tu rbo  decoding 2 l \ d k ) .  The outputs of the proposed channel estim ator 

are the refined channel estim ate h^) and its error variance Xk \  This two information will 

be reserved for the next iteration of channel estimate. Further, the refined channel estim ate

will first be preprocessed to  derive the new decision variable zk \  The refined error
ft) ft)variance A)/ and the  new decision variable zk will then be sent to  the tu rbo  decoder to

derive the new channel reliability factor L ^ \ d k ) .  The tu rbo  decoder then  generates the new

extrinsic information L^\{dk)  and sends it to the channel estim ator 2 for the next iteration

of channel estimation.

The proposed blind channel estim ator uses the a priori information of the transm itted  

d a ta  bits buried under the  extrinsic information from the tu rbo  decoder. This information 

can help us to  refine the  channel estim ate and its error variance for d a ta  bits. However, the 

proposed channel estim ator will only refine the  channel estim ate for the  transm itted  data  

bits, b u t not for the transm itted  parity bits, because we only have the extrinsic information 

of the d a ta  bits. Also, since the fading factors in our fading channel model are independent 

from each other, the proposed channel estim ator is working in a bit-by-bit way. The refined 

channel estim ate and its error variance are then  fed back to  the tu rbo  decoder for the 

next iteration of decoding. The resulting iteration between the channel estim ator and the 

tu rbo  decoder using the new algorithm, with interm ediate exchange of soft channel-symbol 

information, can improve the performance of bo th  the channel estim ator and the channel 

decoder, as shown by the simulation results in C hapter 7.
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C hapter 5 

Fading Com pensation

One of the differences between the  structure of tu rbo  decoding over fading channels and 

AWGN channels is a preprocessor or a fading com pensator th a t can undo the  effect of 

fading. In this chapter, we try  to  explain why the received d a ta  symbols are multiplied 

by the  complex conjugate of an estim ate of the  channel gain before tu rbo  decoding, [44]. 

Since there has been no m athem atical justification in the  literature for this kind of fading 

com pensation for systems without perfect knowledge of the  channel, we try  to come up with 

some justification. F irst, we derive a linear MMSE estim ator to obtain optim al estimates 

of the  transm itted  d a ta  symbols with noisy channel estimates. Then, it is shown the linear 

MMSE estim ator can be viewed as a normalized version of the preprocessing (fading com­

pensation) operation used in most existing tu rbo  decoding algorithms, [11]. Also, we show 

th a t the normalization has no effect on the BER performance of the tu rbo  decoder.
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5. FADING COMPENSATION

5.1 Linear M M SE estim ator of the transm itted bits

The linear MMSE estim ator tries to  estim ate the transm itted  bits x k from the received bits 

y k and the  channel estim ate hk- We know the  received bits and channel estim ate are

Vk "  akx k T  Tik ,

h k = ak + m k. (5.1)

Prom these two equations, we have

Vk =  {hk -  m k) x k +  n k. (5.2)

The linear MMSE estim ator is given by

Z k =X k  = K 0yk, (5.3)

where K 0 =  R XhyhR~^,  and R XkVk, Ryk are given by

R xkVk =  E [ x ky*k] =  h*k ,

R yk = E [ y ky*k] = \hk \2 + 2(7^ + 2° l -  (5.4)

Then, the linear MMSE estim ator in (5.3) can be w ritten as follows:

Z k = S i = \ht f + h  + 2 o f i K - (5'5)

5.2 The preprocessing before turbo decoding

In Frenger’s paper [12], the preprocessing operation before the tu rbo  decoder is performed 

as follows:

Zk = Vkh*k. (5.6)

The relation between the linear MMSE estim ator in (5.5) and the fading com pensator used 

by Frenger in (5.6) can be shown as follows:

Zk = -jT~zk- (5.7)
ttyk
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5. FADING COMPENSATION

Using the results obtained in [12], we know the pdf of z k conditioned on the  transm itted  

code symbol x k is:

1
P * \ * M  2n a l o m  -  W 2) eXP

^[zkpk]
_<ry0 h{ 1 -  N 2).

Kn \z k\

i  -  h 2:
(5.8)

The pdf of Z k conditioned on the transm itted  code symbol x k can be derived as

P Z u\ x k {%k)  — \Ryic\Pzk\xk ( R y k £ k )

_ I Ryk I
27rcr2CT2 ( l  -  | / r |2) 6XP [cry a h ( l  -  | / r |2)_

We can derive the  channel reliability factor from the  pdf in (5.9) as follows:

'Pzk\xk(Zk\xk ~ + l ) \  _  x

K 0
I Ryk |

a y a h ( l  -  | / r |2]

kVZk\xk{Zk\xk =  -1 )  

where J2 C is the channel reliability factor,

2| p\Rykc r =

(5.9)

(5.10)

(5.11)
OyOh( 1 -  \ll\2)'

For the Log-MAP tu rbo  decoder, in order to  find the  LLR A (dk), we need to  calculate 

probabilities 7{[Z^, Z ^ m 1 ,m], a k(m)  and j3k(m). a k{m) and Pk(m)  can be recursively 

calculated by Z%,m',m],  and 7yi [Z%,2%,m',m] in this case is

7 i [Z i ,ZZ ,m ' , m ]  = ^ L a{dk)xsk{i) +  ^ C cZ skr x sk{i) +  ^ C cZ pk r x vk {i) (5.12)

we find th a t the R yk in the num erator of JZC and the Ryk in the denom inator of Zf. r and 

Z f  r are canceled out by each other, as since:

= 7 i [zsk , z pk ,m ' ,m ]  (5.13)

As a result, the normalization factor does not affect the performance of tu rbo  decoding. In 

o ther words, employing the  fading com pensator (5.6), used by Frenger, or the linear MMSE 

estim ator derived in (5.5) as a fading com pensator does not change the  BER performance 

of the  tu rbo  decoder.
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C hapter 6

Effect o f  SN R  M ism atch  on the 

Perform ance o f  Turbo Decoding  

Algorithms

One requirement of th e  Log-MAP tu rbo  decoder over fading channels is the  knowledge of 

SNR and the error variance of channel estim ate a ^  to  derive the  channel reliability factor 

L c. Since the  proposed tu rbo  decoding algorithm composed of the Log-MAP decoder, both  

the  channel SNR and the  channel fading must be estim ated. Adding any estim ator to  this 

algorithm  increases the complexity of the algorithm. Therefore, any decoding algorithm th a t 

does not need perfect knowledge of SNR or fading factor is more desirable. The effect of SNR 

mismatch on the  performance of tu rbo  decoding algorithms over AWGN channels has been 

discussed in [29] by Jordan and Nichols. In [30] and [28], the effect of SNR mismatch over 

the  fully interleaved channels has been discussed. Valenti and Woerner further discussed the 

effect of SNR mismatch over correlated fading channels in [27]. In 2000, Alexander indicated 

in [9] th a t  “A n estimation o f SN R  is not necessary when implementing the turbo decoder 

with the Max-Log-MAP algorithm”. However, for fading channels, he assumed the channel 

is perfectly known at the  receiver. This is not a good assumption. Practically, for fading
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6. EFFECT OF SN R MISMATCH ON THE PERFORM ANCE OF TURBO DECODING ALGORITHM S

channels, neither SNR nor channel is perfectly known. In this chapter, we first analyze the 

effects of SNR mismatch on the  performance of the  Log-MAP and Max-Log-MAP decoding 

algorithms over AWGN channels, then  we move to  fading channels.

6.1 Effect of an SN R  m ism atch (AW GN Channels)

6.1.1 The M ax-Log-M AP algorithm

We first follow Alexander’s work and analyze the  effect of SNR mismatch on the performance 

of Max-Log-MAP algorithm over AWGN channels.

The estim ated SNR at the input of receiver {jp-)r in decibels equals to the  actual value 

of the  channel SNR (jfe)ch added by an SNR offset A ( ^ ) :

The variance of the noise at the  input of the receiver N q can be expressed as:

A ' =  K XN 0, (6.2)

where

K i  =  l c r r a A(l|)_  (6.3)

The channel reliability factor L c over AWGN channels at the  receiver is:

A^fWs 1 j (r
A ' ~  K xLc- (6'4)

By considering the SNR mismatch indicated in (6.4), the branch transition  probability at 

the receiver can be expressed as

J i[ ( y ly Pk ) ,m ',m \ = ^ L a{dk)x%(i)+ ^ £ cy skx sk( i)+  ^ £ cypkx pk(i),

= \ L a(dk)x%(i) + l ^ L cy skx l( i)  + l ± - L cypk4 ( i ) .  (6.5)

The hat on the 'yi[(yk ,y k) ,m l ,m] denotes th a t this param eter considers the SNR mismatch

at the  receiver. The param eters without this hat denote there are not SNR mismatch.
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6. EFFECT OF SNR MISMATCH ON THE PERFORM ANCE OF TURBO DECODING ALGORITHM S

For the first iteration at the  first tu rbo  decoder, we always assume the  a priori infor­

mation L ati(dk) =  0, so the first term  in (6.5) is 0 and the  transition  probability at the 

receiver can be expressed as

7 * [ (y j fc» 2 / fc W .m ]  =  ^ 7  i\{ySk>yl)’rn' M -  (6 -6)

Since the calculation of a *(m), /3*(m) and A ^ (c 4 )  only need linear m a x  functions, by 

taking (6 .6) into the calculation of these probabilities, we have

®k{m) = ~ a k{m),
& i

P k ( m ) =

A « ( 4 )  =  ± A ? ( d k). (6.7)

For the  first tu rbo  decoder, since K \  is always a positive number, the hard decision which

depends on the sign of the LLR A ^(< 4) will not be affected by the SNR mismatch A ( ^ ) .

For the  second tu rbo  decoder, the  extrinsic information generated from the first tu rbo  

decoder can be expressed as

£ ^}{d k) =  A{l \ d k) -  L a>1(dk) -  L cy sk. (6.8)

In (6.8), th e  second term  on the right of the equation is 0 , the LLR A ^  and channel 

reliability factor £ c have been proved to be proportional to  the  factor so the  extrinsic 

information L ^ \(d k) will be proportional to  the  factor too. This extrinsic information, 

after interleaving, will be used as the  a priori information for th e  second tu rbo  decoder. 

We substitu te  the L a>2 (dk) in the  branch transition probability calculation with C ^ \(d k) 

and get

~(i[{yk>yVk ) im ' M  ( 4 K ( f )  +  ^ cykx k{i) + ^ £ c i f a pk{i)• (6.9)

Similar to  the  proof for the  first tu rbo  decoder, the first term  in (6.9) now is proportional

to  the  we have

7»[(?/*.y * W , m ]  =  4 - 7 i [ ( y ! , y E W . ™ ] »  (6 -io)
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6. EFFECT OF SNR MISMATCH ON THE PERFORM ANCE OF TURBO DECODING ALGORITHMS

and get the  same results as (6.7):

a k(m) =  - ^ - a k(m),

Pk{m) =  — Pk{m),
JA1

A ^ (4 )  = ^2\dk) .  (6.11)

For the next iterations, the whole process repeats. The second tu rbo  decoder will also 

generate the  extrinsic information /^ (d * .) ,

=  A^ { d k )  ~  L aa{dk) -  £ cy i,

=  A ^ d * )  -  £ « ( 4 )  -  Ccysk. (6.12)

This extrinsic information, after de-interleaving, will be used by the  first tu rbo  decoder 

as the a priori information. C ^\{dk) is also proportional to  the Similarly, for the 

successive iterations of decoding, we can get the same results with (6.7) and (6.11).

So far, for the Max-Log-MAP decoder over AWGN channels, we have mathem atically 

proved the hard decision which depends on the sign of the  LLR A^(dyt) and A ̂ (d k )  will not 

be affected by the SNR mismatch at the receiver. As a result, the Max-Log-MAP algorithm 

is insensitive to  SNR mismatch over AWGN channels.

6.1.2 The Log-M AP algorithm

For th e  Max-Log-MAP algorithm, we only need to  calculate the  linear max function and we 

get the  result in (6.7). For the Log-MAP algorithm, when trying to  obtain the  probabilities 

Pk{m ) an(l LLR A(<4), we need to  calculate the non-linear max function:

rnax(5 i , 5 2) — m a x (S i , 6  2) +  ln (l +  e~^2~'5l l). (6.13)

The m ax  function has nonlinear part ln (l +  e~l<52_<5l l), thus we cannot get th e  similar results 

with (6.7), or we can say

a-k{m) 7! - ^ - a k(m),
A 1

Pk{™) ±  — Pk{m),
A 1

A {i)(dk) ±  i - A  « (d * ). (6.14)
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6. EFFECT OF SN R MISMATCH ON THE PERFORM ANCE OF TURBO DECODING ALGORITHMS

The sign of the A ^ ( d k) is not guaranteed to  be the  same with AW(d*). The performance 

will be affected and the  Log-MAP tu rbo  decoder is sensitive to  th e  SNR mismatch over 

AWGN channels.

6.2 Effect of an SN R  m ism atch (Fading Channels)

6.2.1 The M ax-Log-M AP algorithm

For fading channels with noisy channel estim ation, we will use the  channel reliability factor

derived in [12],
\ \ /W a 2 

L '  =  ~ N T a“
at

2Et
N 0

If we consider the SNR mismatch in (6.2), the  channel reliability factor at the 

be derived as follows:

(6.15) 

receiver can

—  2 
N< ° a

2
RiiVo'70

*

( 2 E.
\ N (T al  + 1 ) + a

- 1

att, ( - ^ N - a 2a +  1 ) + a 2a
K iN 0

- i

(6.16)

For the first iteration of decoding, at the first tu rbo  decoder, by considering the a priori 

information is 0, the  branch transition probability can be expressed as follows:

—  r /  5  p \  /  l  \ /  2

Ui{{Zk,Zk)’m  ’m \ =  ~ K jfo aa

X

m \K rN o
■*P J P t

+  1 + * i

(6.17)

We cannot take the second K \  on the right side of the equation out of the brackets w ithout 

affecting other param eters. We cannot obtain the  result as we did for the  Max-Log-MAP 

algorithm over AWGN channels:

(6.18)
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6. EFFECT OF SN R MISMATCH ON THE PERFORM ANCE OF TURBO DECODING ALGORITHM S

Therefore, we cannot get the similar result as (6.7) either,

®k{m) j=- - ^ -ak(m),
A I

A { m )  ^

7̂  - ^ A (i1}( 4 ) .  (6.19)
A  l

In this case, The sign of the Aj£ (dfc) is not guaranteed to  be the same with A ^ (c4 ).

For the  second turbo  decoder, the  extrinsic information generated from the first turbo 

decoder can be expressed as

4 ! i (dk) =  A^ ( 4 )  -  L a,i(dk) -  Ccy l  (6.20)

The second term  on the right side of equation L aii(d k) =  0, from (6.16) and (6.19), we get

£ S ( 4 )  ^  ^ £ 1  (<**)• (6.21)

This extrinsic information will be used in the second decoder as the a priori information. 

In the second decoder, when calculating the  transition probability:

7i[(zaky k),m',m] = ^£,^l{dk)xsk{i) + ^ £ c^[zsk)xsk(i)

+ -2^ [ z l ] x l ( i )  (6.22)

From (6.16), (6.19) and (6.22), we get

7 i[(4 > 4 )> TO'>m ] ^  (6-23)

Finally, we get

S k(m) £  ~-OLk{m),
JAl

Pk{m) ±  ~ ( 3 k{m),
A i

A ̂ \ d k) t  ^ A  « ( 4 ) .  (6.24)
A i

The sign of the A ^ \ d k) is not guaranteed to  be the same as th a t of A2£ (d/;). The per­

formance of decoding will be affected by SNR mismatch. From the  second iteration, the
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6. EFFECT OF SNR MISMATCH ON THE PERFORM ANCE OF TURBO DECODING ALGORITHM S

process repeats. W hen th e  number of iteration i >  1, we can further prove th a t

A f { d k )  ^  ~ 4 \ d k),

A f { d k) ±  — A f { d k). (6.25)

In [9], it has been concluded th a t the Max-Log-MAP algorithm is insensitive to  the SNR

mismatch at the receiver over both  AWGN and fading channels. The authors assumed

the channel is known at the receiver when discussing the sensitivity of the Max-Log-MAP 

algorithm  over fading channels. Such a result is misleading, since for fading channels, if the 

channel is perfectly known or cr^ =  0, the channel reliability factor will be the  same as th a t 

of AWGN channel,
4 \ /E s . ,

L c =  — . (6.26)

In this case, the performance of the Max-Log-MAP decoder can be insensitive to  the SNR 

mismatch. However, if cr^ ^  0, the Max-Log-MAP algorithm is sensitive to  SNR mismatch. 

In o ther words, the Max-Log-MAP tu rbo  decoding algorithm is sensitive to  SNR mismatch 

over fading channels with noisy channel estimates.

6.2.2 The Log-M AP algorithm

Two factors will make the  Log-MAP decoder sensitive to SNR mismatch over fading chan­

nels. The first factor is th a t we have to  consider the  error variance of channel estim ate <t^ 

when deriving the  channel reliability factor L c. For both  tu rbo  decoders, similar to  (6.18),

7i[{zsk ,z pk),m ',m ]  ^  zpk),rrt!,m]. (6.27)

The second factor is th a t we need to  calculate the non-linear max function when trying 

to  obtain the probabilities a ^ m ) ,  /?^(m) and LLR A (d^), the nonlinear max is defined as 

follows:

m a x(5 i ,d 2 ) — rnax{5 \ , 8 2 ) + ln (l +  e - ^2^ 1!). (6.28)
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Because of the nonlinear term  ln (l +  e ^  ^ l) on the right side of the equation, we have

JA1

Pk{m) ^  — Pk{m),

A (l\ d k) ±  (6.29)
JA1

The sign of the A(%\ d k) is not guaranteed to be the same as th a t of A ^(<4). Therefore, 

the Log-MAP decoder is sensitive to  SNR mismatch over fading channels.
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C hapter 7

Simulation Results

In th is chapter, simulation results are presented to  dem onstrate the performance of the 

proposed iterative algorithm for tu rbo  decoding with integrated channel estim ation for 

BPSK signaling over Rayleigh fading channels. Also, simulation results are given to  show the 

effect of SNR mismatch on the performance of the Log-MAP and Max-Log-MAP decoding 

algorithms using both  the proposed SNR mismatch model and the conventional one.

7.1 Channel estim ator performance

In all the simulated results presented in this section, it is assumed th a t the  Rayleigh fading 

channel is fully interleaved. Also, in these simulations, we use a tu rbo  code produced by the 

generator polynomials (37,21) (in octal form) and a code ra te  of 1/3. The d a ta  frame size is 

N  =  420 and the  tu rbo  decoding algorithm uses 8 iterations. In Fig. 7.1, the  performance 

of the blind channel estim ator 2 using the new metric is examined when the error variance 

of the initial channel estim ation is a^  =  0.1. The performance of the  estim ator are shown 

at SNRs 2, 3, 4 and 5 dB with diamond, triangle (up), triangle (down) and circle lines, 

respectively. The horizontal axis is the  number of iterations, and the vertical axis is the 

mean value of the  error variance for one frame of d a ta  bits. We see th a t the error variance of
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0.04

0 .03
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Figure 7.1: Performance of Channel estim ator 2

the  channel estim ation is decreasing w ith the  number of iteration of decoding. The extrinsic 

information provide by the  channel decoder from each iteration of decoding can help the 

channel estim ator 2 to refine its channel estim ate. At high SNR, the error variance drops 

faster. For example, when Eb/No — 2 dB, after 8 iterations, the error variance drops to 

0.08, while for Eb/No = 5 dB, after the  same number of iterations, the error variance a ^  

drops to  0.04. In Fig. 7.2, the  performance of the blind channel estim ator 2 is examined 

when the error variance of the initial channel estim ation is 0.2. At high SNR, the channel 

estim ator 2 needs only 5 to  6 iterations for updating its estim ates to  obtain estim ates of 

the  fading factors of d a ta  bits th a t are very close to  their actual values. For example, 

when Eb/No = 7 dB, after 6 iterations of re-estimation, th e  error variance already drops to 

around 0.05. In Fig. 7.3, the  performance of the  channel estim ator 2 is examined when the 

error variance of initial channel estim ation is 0.4. We see when the error variance of the 

initial channel estim ation is high, the channel estim ator performs even better. For example, 

by comparing Figures 7.2 and 7.3 with each other, after 8 iterations at Eb/No =  7 dB,
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Figure 7.2: Performance of Channel estim ator 2
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Figure 7.3: Performance of Channel estim ator 2
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BER of Turbo decoder, 8 iterations, frame size=420

— <C=o

LU 1 0

10'5

Eb/NO dB

Figure 7.4: BER performance of the proposed algorithm

the error variance <r^ drops from 0.2 to about 0.04 in the first graph, while in the second 

graph, drops from 0.4 to  about 0.05. At last, in Fig. 7.4, the  bit-error ra te (BER) 

performance of the new metric is examined. The horizontal axis is S N R  =  Eb/No in dB, 

and the  vertical axis is the BER performance. The dashed lines is the  performance of the 

Log-MAP tu rbo  decoding algorithm over fading channels w ithout the  channel estim ator 2, 

the  solid lines is the performance of the proposed turbo  decoding algorithm based on the 

new metric and integrated with channel estimation. The diamond, triangle and hexagram 

shapes represent the  error variance of the initial channel estim ate at <r^ =  0.1,0.2,0.4, 

respectively. As a reference, we also show the  performance of the algorithm with perfect 

channel estim ation using dashed circle lines. From the simulation results, it is observed th a t 

the  BER performance has been improved by integrating the  Log-MAP decoder with the 

channel estim ator. Especially, when the  initial estim ation is very farther from the actual 

fading factor (i.e. a ^  =  0.4), the SNR gain is higher. For example, when =  0.4, at BER 

10—4, th e  gain th a t can be obtained is about 1 dB.
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BER perform ance sensitivity to SNR m ism atch, a =0.1

01
LDop

Eb/NO offset dB

Figure 7.5: Effect of SNR mismatch (fading channels)

7.2 BER  performance of turbo decoding algorithms:

Effect of SN R  mism atch

In th e  following simulations, we will consider the fading channels w ith imperfect channel 

estimation. In Fig. 7.5, the  effect of SNR mismatch on the Log-MAP and Max-Log-MAP 

decoding algorithms over fading channels are examined when the  error variance of the initial 

channel estim ation is <r^ = 0 .1 . The dashed lines represent the  performance of the Max- 

Log-MAP decoder and the solid lines represent the  performance of th e  Log-MAP decoder. 

The shapes of circle, square and triangle represent different SNRs. The Eb/No are chosen 

for the case th a t there is no SNR mismatch. As hown in the  figure, the BER performance 

of the  Log-MAP decoder is approximately 10~2,10” 3,10~4. The horizontal axis is the SNR 

offset from -6 dB to 6 dB. The vetical axis is the BER performance. From the simulations, it 

can be seen th a t the Max-Log-MAP decoder is sensitive to  the  SNR mismatch because the 

performance is not independent of SNR mismatch. However, the  Max-Log-MAP decoder

is less sensitive to  the SNR mismatch th an  Log-MAP decoder. In Figures 7.6 and 7.7,
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Figure 7.6: Effect of SNR mismatch (fading channels)

BER perform ance sensitivity to SNR m ism atch, a  =0.4

— 6 —  Log-MAP,Eb/N0*6.S dB 
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—A —  Log-MAP ,Eb/N0=8.2 dB 
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Figure 7.7: Effect of SNR mismatch (fading channels)
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the  effect of SNR mismatch has also been examined when the  error variance of channel 

estim ation is ofj =  0.2 and of^ =  0.4.

All the results reported in the  literature by other researchers, are based on the following 

SNR mismatch model:

where the SNR mismatch (offset) is viewed as a constant for all th e  transm itted  frames for a 

given SNR point. Therefore, each frame is assumed to  experience the  same SNR mismatch.

In this thesis, we propose a new SNR mismatch model as

4 = l o + ( 4 W  (7-2)

where the (-j^)error is a random  variable with zero mean and variance o f. Using this new 

SNR mismatch model, the SNR mismatch is considered as a random  variable and each 

frame experiences different SNR mismatch. This is a more realistic assumption, since the 

channel estimates can be different for each frame.

In Figures 7.8, 7.9 and 7.10 the effect of SNR mismatch on the performance of the  Log- 

MAP and Max-Log-MAP decoding algorithms over fading channels has been examined. 

The error variance of the initial channel estim ation are =  0.1, off =  0.2 and off =  0.4. 

The variance of th e  SNR mismatch offset of is from 0 dB to  8 dB. The horizontal axis is 

the  variance of the  SNR mismatch a 1 and the  vertical axis is the  BER performance. All 

the simulation results still verify th a t the Max-Log-MAP decoder is sensitive to  the  SNR 

mismatch over fading channels when the channel is not perfectly known. However, the 

Max-Log-MAP decoder is less sensitive to  the  SNR mismatch than  the  MAP or Log-MAP 

decoder. There is another scenario th a t it has been observed in the simulations. W hen 

the  SNR mismatch is not th a t high, the  BER performance of Log-MAP decoder is much 

be tte r th an  th a t of the Max-Log-MAP decoder. However, when the SNR mismatch is high, 

the  BER performance of the two algorithms are approximately the same. For example, in 

Fig. 7.10, when o f =  3 dB, the  BER performance of the Log-MAP decoder is 10~4 and the 

Max-Log-MAP is greater than  10- 3 . W hen of =  8 dB, the performance of the Max-Log- 

MAP decoder is even a little better th an  th a t of the  Log-MAP decoder. This result can
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Figure 7.8: Effect of SNR mismatch with new model
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Figure 7.9: Effect of SNR mismatch with new model
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BER perform ance sensitivity to SNR m ism atch, <7^=0.4
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Figure 7.10: Effect of SNR mismatch with new model

only be seen when we use the new SNR mismatch model. The new SNR mismatch model 

is more practical th an  the conventional one for systems having knowledge of noisy channel 

estim ates (instead of having perfect knowledge of the channel).

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 8 

Conclusion and Future Research  

Directions

8.1 Overview

In this thesis, a number of open problems in tu rbo  decoding for BPSK signaling on Rayleigh 

flat-fading channels with noisy channel estim ates have been solved.

F irst, we have proposed an iterative algorithm for joint tu rbo  decoding and channel esti­

mation over Rayleigh flat-fading channels. The proposed algorithm  is based on a new turbo 

decoding metric which includes the uncertainty of the channel estimate. The channel de­

coder in this iterative algorithm provides soft extrinsic information of the  transm itted  data  

symbols which are used by the channel estim ator to  refine its estim ate for the  next iteration 

of decoding. The resulting iteration between the channel estim ator and the tu rbo  decoder 

using the new metric, with interm ediate exchange of soft channel-symbol information, can 

improve the  performance of both  the  channel estim ator and th e  channel decoder. Simu­

lation results show th a t  the proposed algorithm can outperform  conventional algorithms 

significantly.

As our second contribution in this thesis, we have proposed a new preprocessor (or
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fading compensator) to  compensate the effect of the fading distortion on the  turbo-coded 

signals before feeding the  tu rbo  decoder. First, we have derived th e  linear MMSE estimates 

of the  transm itted  d a ta  symbols w ith noisy channel estimates;. Then, it has been shown the 

linear MMSE estim ator can be viewed as a normalized version of the preprocessing (fading 

compensation) operation used in most existing tu rbo  decoding algorithms. Also, we have 

shown th a t the  normalization has no effect on the  BER performance of th e  tu rbo  decoder.

We also have studied the effect of SNR mismatch on the performance of the Log-MAP 

and Max-Log-MAP decoding algorithms over fading channels. Based on the  previous results 

reported by other researchers, turbo-decoding with the Max-Log-MAP decoder is indepen­

dent of SNR for Rayleigh fading channels. However, we prove th a t the Max-Log-MAP 

decoder is sensitive to  SNR mismatch over fading channels when the  channel is not per­

fectly known. The result has been verified by the simulations. Also, it has been shown 

th a t the  Max-Log-MAP decoder is less sensitive to  SNR mismatch th an  the  Log-MAP de­

coder. Using simulation results, it is also observed th a t for low SNR mismatch the BER 

performance of the Log-MAP decoder is much be tte r th an  th a t of Max-Log-MAP decoder. 

W hereas, for high SNR mismatch, the BER performance of the  Max-Log-MAP decoder is 

closer to or even better th an  th a t of Log-MAP decoder. Thus, when SNR mismatch is 

low and complexity is not a problem, the Log-MAP algorithm for tu rbo  decoding in fading 

channels is the best choice. On the other hand, when SNR m ismatch is very high, the 

Max-Log-MAP algorithm for tu rbo  decoding is a be tte r choice for simplicity.

In the end, we propose a new SNR mismatch model to  examine the sensitivity of the 

BER performance of tu rbo  decoding to  SNR mismatch for systems having knowledge of 

noisy channel estimates (instead of having perfect knowledge of the  channel). In the con­

ventional SNR mismatch model, the SNR mismatch (offset) is viewed as a constant for all 

the  transm itted  frames for a given SNR point. Then, each frame experiences the  same SNR 

mismatch. Whereas, in the new SNR mismatch model, the  SNR mismatch is considered 

as a random  variable and each frame experiences different SNR mismatch. This is a more 

realistic assumption, since the channel estim ates can be different for each frame. Using the 

new SNR mismatch model, simulation results still verify th a t the Max-Log-MAP decoder
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is sensitive to SNR mismatch over fading channels when the  channel is not perfectly known 

at th e  receiver.

8.2 Suggestions for future studies

The results obtained in this thesis can be used as the basis for the  following further research:

•  Higher-order modulation schemes: All the results reported in this thesis are for tu rbo  

decoding for binary phase-shift keying (BPSK) signaling. It would be of theoretical 

and practical interest im portance to consider higher-order modulation schemes (any 

type of digital m odulation with an order of 4 or higher), for example, quadriphase 

shift keying (QPSK) or M-ary quadrature-am plitude modulation (M-ary QAM).

•  A new turbo decoding metric: Moreover, in this thesis, the  channel reliability factor 

is derived based on the assum ption th a t the  SNR is perfectly known at the receiver. 

In practice, since this assum ption is not realistic, the param eter SNR have to  be 

estim ated. Thus, it is very im portant to  derive a new tu rbo  decoding metric th a t can 

take into account not only the uncertainty (or error variance) of the  channel estim ate 

bu t also the error variance of the SNR estimate.

•  Turbo equalization: Finally, the concept of tu rbo  decoding, or iterative decoding algo­

rithm  can be applied to  channel equalization. In this thesis, we have considered a fully 

interleaved Rayleigh flat-fading channel which is a memoryless channel. It is be very 

im portant to  design an iterative equalizer for tu rbo  decoding over fading intersymbol 

interference (ISI) channels w ithout having perfect knowledge of the  channel.
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