53,726 research outputs found
Recommended from our members
Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes
The wind turbine wakes impact the efficiency and lifespan of the wind farm. Therefore, to improve the wind plant performance, research on wind plant control is essential. The actuator line model (ALM) is proposed to simulate the wind turbine efficiently. This research investigates the National Renewable Energy Laboratory 5 Million Watts (NREL 5-MW) wind turbine wakes with Open Field Operation and Manipulation (OpenFOAM) using ALM. Firstly, a single NREL 5-MW turbine is simulated. The comparison of the power and thrust with Fatigue, Aerodynamics, Structures, and Turbulence (FAST) shows a good agreement below the rated wind speed. The information relating to wind turbine wakes is given in detail. The top working status is proved at the wind speed of 8 m/s and the downstream distance of more than 5 rotor diameters (5D). Secondly, another case with two NREL 5-MW wind turbines aligned is also carried out, in which 7D is validated as the optimum distance between the two turbines. The result also shows that the upstream wind turbine has an obvious influence on the downstream one
Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity
We propose a simple unconventional geometric scenario to achieve a kind of
nontrivial multi-qubit operations with superconducting charge qubits placed in
a microwave cavity. The proposed quantum operations are insensitive not only to
the thermal state of cavity mode but also to certain random operation errors,
and thus may lead to high-fidelity quantum information processing. Executing
the designated quantum operations, a class of highly entangled cluster states
may be generated efficiently in the present scalable solid-state system,
enabling one to achieve one-way quantum computation.Comment: Accepted version with minor amendments. To appear in Phys. Rev.
Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys
The focus of this paper is the mechanistic basis of the load shedding phenomenon that occurs under the dwell fatigue loading scenario. A systematic study was carried out using a discrete dislocation plasticity (DDP) model to investigate the effect of crystallographic orientations, localised dislocation behaviour and grain combinations on the phenomenon. Rate sensitivity in the model arises from a thermal activation process at low strain rates, which is accounted for by associating a stress- and temperature-dependent release time with obstacles; the activation energy was determined by calibrating an equivalent crystal plasticity model to experimental data. First, the application of Stroh's dislocation pile-up model of crack nucleation to facet fracture was quantitatively assessed using the DDP model. Then a polycrystalline model with grains generated using a controlled Poisson Voronoi tessellation was used to investigate the soft-hard-soft rogue grain combination commonly associated with load shedding. Dislocation density and peak stress at the soft/hard grain boundary increased significantly during the stress dwell period, effects that were enhanced by dislocations escaping from pile-ups at obstacles. The residual stress after dwell fatigue loading was also found to be much higher compared to standard fatigue loading. Taylor (uniform strain) and Sachs (uniform stress) type assumptions in a soft-hard grain combination have been assessed with a simple bicrystal DDP model. Basal slip nucleation in the hard grain was found to be initiated by high stresses generated by strong pile ups in the soft grain, and both basal and pyramidal slip nucleation was observed in the hard grain when the grain boundary orientation aligned with that of an active slip system in the soft grain. The findings of this study give new insight into the mechanisms of load shedding and faceting associated with cold dwell fatigue in Ti alloys used in aircraft engines
Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue
This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet
Upper Pseudogap Phase: Magnetic Characterizations
It is proposed that the upper pseudogap phase (UPP) observed in the high-Tc
cuprates correspond to the formation of spin singlet pairing under the bosonic
resonating-valence-bond (RVB) description. We present a series of evidence in
support of such a scenario based on the calculated magnetic properties
including uniform spin susceptibility, spin-lattice and spin-echo relaxation
rates, which consistently show that strong spin correlations start to develop
upon entering the UPP, being enhanced around the momentum (\pi, \pi) while
suppressed around (0, 0). The phase diagram in the parameter space of doping
concentration, temperature, and external magnetic field, is obtained based on
the the bosonic RVB theory. In particular, the competition between the Zeeman
splitting and singlet pairing determines a simple relation between the
"critical" magnetic field, H_{PG}, and characteristic temperature scale, T0, of
the UPP. We also discuss the magnetic behavior in the lower pseudogap phase at
a temperature Tv lower than T0, which is characterized by the formation of
Cooper pair amplitude where the low-lying spin fluctuations get suppressed at
both (0, 0) and (\pi, \pi). Properties of the UPP involving charge channels
will be also briefly discussed.Comment: 11 pages, 5 figures, final version to appear in PR
Viscous effects on a vortex wake in ground effect
Wake vortex trajectories and strengths are altered radically by interactions with the ground plane. Prediction of vortex strength and location is especially important in the vicinity of airports. Simple potential flow methods have been found to yield reasonable estimates of vortex descent rates in an otherwise quiescent ambient background, but those techniques cannot be adjusted for more realistic ambient conditions and they fail to provide satisfactory estimates of ground-coupled behavior. The authors have been involved in a systematic study concerned with including viscous effects in a wake-vortex system which is near the ground plane. The study has employed numerical solutions to the Navier-Stokes equations, as well as perturbation techniques to study ground coupling with a descending vortex pair. Results of a two-dimensional, unsteady numerical-theoretical study are presented in this paper. A time-based perturbation procedure has been developed which permits the use of analytical solutions to an inner and outer flow domain for the initial flow field. Predictions have been compared with previously reported laminar experimental results. In addition, the influence of stratification and turbulence on vortex behavior near the ground plane has been studied
- …