2,517 research outputs found

    Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures

    Get PDF
    In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology

    N-[2-(6-Methyl-4-oxo-4H-chromen-3-yl)-4-oxothia­zolidin-3-yl]furan-2-carbox­amide N,N-dimethyl­formamide solvate

    Get PDF
    The title mol­ecule, C18H14N2O5S·C3H7NO, comprises of a carboxamide group bonded to a furan ring and a distorted envelope-shaped 4-oxothia­zolidin-3-yl group which is connected to a substituted 6-methyl-4-oxo-4H-chromen-3-yl group. Extensive strong N—H⋯O and weak C—H⋯O inter­molecular hydrogen-bonding inter­actions occur between dimethyl­formamide (DMF), the crystallizing solvent, and the various heterocyclic groups within the compound, as well as additional weak C—H⋯O inter­actions between the heterocyclic groups themselves. The carboxyl group of the DMF solvent mol­ecule forms a trifurcated (four-center) acceptor hydrogen-bond inter­action with the carboxamide, furan and 6-methyl-4-oxo-4H-chromen-3-yl groups. The dihedral angles between the planar chromone group [maximum deviation = 0.0377 (18)°] and those of the furan and 4-oxothia­zolidin-3-yl groups are 89.4 (6) and 78.5 (1)°, respectively

    Parametric resonance analyses for spar platform in irregular waves

    Get PDF
    The parametric instability of a spar platform in irregular waves is analyzed. Parametric resonance is a phenomenon that may occur when a mechanical system parameter varies over time. When it occurs, a spar platform will have excessive pitch motion and may capsize. Therefore, avoiding parametric resonance is an important design requirement. The traditional methodology includes only a prediction of the Mathieu stability with harmonic excitation in regular waves. However, real sea conditions are irregular, and it has been observed that parametric resonance also occurs in non-harmonic excitations. Thus, it is imperative to predict the parametric resonance of a spar platform in irregular waves. A Hill equation is derived in this work, which can be used to analyze the parametric resonance under multi-frequency excitations. The derived Hill equation for predicting the instability of a spar can include non-harmonic excitation and random phases. The stability charts for multi-frequency excitation in irregular waves are given and compared with that for single frequency excitation in regular waves. Simulations of the pitch dynamic responses are carried out to check the stability. Three-dimensional stability charts with various damping coefficients for irregular waves are also investigated. The results show that the stability property in irregular waves has notable differences compared with that in case of regular waves. In addition, using the Hill equation to obtain the stability chart is an effective method to predict the parametric instability of spar platforms. Moreover, some suggestions for designing spar platforms to avoid parametric resonance are presented, such as increasing the damping coefficient, using an appropriate RAO and increasing the metacentric height

    Velocity–vorticity correlation structure in turbulent channel flow

    Get PDF

    The effect of ride experience on changing opinions toward autonomous vehicle safety

    Get PDF
    Autonomous vehicles (AVs) are a promising emerging technology that is likely to be widely deployed in the near future. People\u27s perception on AV safety is critical to the pace and success of deploying the AV technology. Existing studies found that people\u27s perceptions on emerging technologies might change as additional information was provided. To investigate this phenomenon in the AV technology context, this paper conducted real-world AV experiments and collected factors that may associate with people\u27s initial opinions without any AV riding experience and opinion change after a successful AV ride. A number of ordered probit and binary probit models considering data heterogeneity were employed to estimate the impact of these factors on people\u27s initial opinions and opinion change. The study found that people\u27s initial opinions toward AV safety are significantly associated with people\u27s age, personal income, monthly fuel cost, education experience, and previous AV experience. Further, the factors dominating people\u27s opinion change after a successful AV ride include people\u27s age, personal income, monthly fuel cost, daily commute time, driving alone indicator, willingness to pay for AV technology, and previous AV experience. These results provide important references for future implementations of the AV technology. Additionally, based on the inconsistent effects for variables across different models, suggestions for future transportation survey designs are provided

    An Evacuation Model for Passenger Ships That Includes the Influence of Obstacles in Cabins

    Get PDF
    Passenger behavior and ship environment are the key factors affecting evacuation efficiency. However, current studies ignore the interior layout of passenger ship cabins and treat the cabins as empty rooms. To investigate the influence of obstacles (e.g., tables and stools) on cabin evacuation, we propose an agent-based social force model for advanced evacuation analysis of passenger ships; this model uses a goal-driven submodel to determine a plan and an extended social force submodel to govern the movement of passengers. The extended social force submodel considers the interaction forces between the passengers, crew, and obstacles and minimises the range of these forces to improve computational efficiency. We drew the following conclusions based on a series of evacuation simulations conducted in this study: (1) the proposed model endows the passenger with the behaviors of bypassing and crossing obstacles, (2) funnel-shaped exits from cabins can improve evacuation efficiency, and (3) as the exit angle increases, the evacuation time also increases. These findings offer ship designers some insight towards increasing the safety of large passenger ships
    corecore