732 research outputs found

    Effects of X-rays on vascular function in transplanted tumours and normal tissues in the mouse.

    Get PDF
    The effects of X-radiation on the Nembutal-induced redistribution of the cardiac output in two types of transplanted mouse tumours and some normal mouse tissues have been investigated, using rubidium-86 and 125I-human serum albumin. Irradiation causes an increase in 86Rb uptake (relative blood perfusion) by the tumours of anaesthetized mice, but has little or no effect in non-anaesthetized mice. The increase is dose- and time-dependent. Tumour plasma space is not significantly affected by radiation and Nembutal. Muscle blood perfusion is severely decreased in anaesthetized mice and is not affected by radiation, at least within the time limits of the experiments. This means that radiation-induced functional vascular changes in normal and neoplastic tissues follow different time courses. On the basis of the present results, and of the results of other authors, it is argued that irradiation damages the vasculature of tumours in such a way that it becomes more sensitive to changes in systemic blood pressure

    Quantum Degenerate Systems

    Full text link
    Degenerate dynamical systems are characterized by symplectic structures whose rank is not constant throughout phase space. Their phase spaces are divided into causally disconnected, nonoverlapping regions such that there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems --in which the degeneracy cannot be eliminated by redefining variables in the action--, the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.Comment: 18 pages, no figure

    The effect of anaesthetics on blood perfusion in transplanted mouse tumours.

    Get PDF
    Rubidium-86, 125I-human serum albumin and 51Cr-labelled red cells have been used to investigate the effects of the anaesthetics Nembutal (pentobarbitone sodium) and urethane on blood perfusion, blood volume and albumin leakage in 5 types of transplanted mouse tumour and in normal organs. Nembutal was found to increase the relative blood perfusion by a factor of 1-3 to 2-0 in tumours and by a factor of 1-7 to 3-0 in kidneys but muscle perfusion fell to 0-3-0-5 that of controls. The effects of urethane were found to be dose dependent, generally in the same direction as for Nembutal, and smaller. Both anaesthetics reduced the blood volume of tumours (except for the C3H mammary carcinoma) and of kidneys by factors of 0-2 to 0-8. The duration of anaesthesia had no effect on the plateau values of relative blood perfusion and blood volume in either tumours or normal organs, but Nembutal delayed slightly the 86Rb uptake and decreased the rate of albumin leakage

    Transgression forms and extensions of Chern-Simons gauge theories

    Full text link
    A gauge invariant action principle, based on the idea of transgression forms, is proposed. The action extends the Chern-Simons form by the addition of a boundary term that makes the action gauge invariant (and not just quasi-invariant). Interpreting the spacetime manifold as cobordant to another one, the duplication of gauge fields in spacetime is avoided. The advantages of this approach are particularly noticeable for the gravitation theory described by a Chern-Simons lagrangian for the AdS group, in which case the action is regularized and finite for black hole geometries in diverse situations. Black hole thermodynamics is correctly reproduced using either a background field approach or a background-independent setting, even in cases with asymptotically nontrivial topologies. It is shown that the energy found from the thermodynamic analysis agrees with the surface integral obtained by direct application of Noether's theorem.Comment: 28 pages, no figures. Minor changes in the introduction, final comments and reference

    Effectively four-dimensional spacetimes emerging from d=5 Einstein-Gauss-Bonnet Gravity

    Full text link
    Einstein-Gauss-Bonnet gravity in five-dimensional spacetime provides an excellent example of a theory that, while including higher-order curvature corrections to General Relativity, still shares many of its features, such as second-order field equations for the metric. We focus on the largely unexplored case where the coupling constants of the theory are such that no constant-curvature solution is allowed, leaving open the question of what the vacuum state should then be. We find that even a slight deviation from the anti-de Sitter Chern-Simons theory, where the vacuum state is five-dimensional AdS spacetime, leads to a complete symmetry breakdown, with the fifth dimension either being compactified into a small circle or shrinking away exponentially with time. A complete family of solutions, including duality relations among them, is uncovered and shown to be unique within a certain class. This dynamical dimensional reduction scenario seems particularly attractive as a means for higher-dimensional theories to make contact with our four-dimensional world.Comment: 9 pages, 4 figures. v2: New section on geometrical significance of solutions. Final version for CQ

    Thermodynamics of Black Holes in Schroedinger Space

    Full text link
    A black hole and a black hyperboloid solutions in the space with the Schroedinger isometries are presented and their thermodynamics is examined. The on-shell action is obtained by the difference between the extremal and non-extremal ones with the unusual matching of the boundary metrics. This regularization method is first applied to the black brane solution in the space of the Schroedinger symmetry and shown to correctly reproduce the known thermodynamics. The actions of the black solutions all turn out to be the same as the AdS counterparts. The phase diagram of the black hole system is obtained in the parameter space of the temperature and chemical potential and the diagram contains the Hawking-Page phase transition and instability lines.Comment: 20 page

    Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria

    Get PDF
    The combination of essential oils (EOs) with antibiotics provides a promising strategy towards combating resistant bacteria. We have selected a mixture of 3 major components extracted from EOs: carvacrol (oregano oil), eugenol (clove oil) and cinnamaldehyde (cinnamon oil). These compounds were successfully encapsulated within lipid nanocapsules (LNCs). The EOs-loaded LNCs were characterised by a noticeably high drug loading of 20% and a very small particle diameter of 114nm. The in vitro interactions between EOs-loaded LNCs and doxycycline were examined via checkerboard titration and time-kill assay against 5 Gram-negative strains: Acinetobacter baumannii SAN, A. baumannii RCH, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. No growth inhibition interactions were found between EOs-loaded LNCs and doxycycline (FIC index between 0.7 and 1.30). However, when bactericidal effects were considered, a synergistic interaction was observed (FBC index equal to 0.5) against all tested strains. A synergistic effect was also observed in time-kill assay (a difference of at least 3 log between the combination and the most active agent alone). Scanning electron microscopy (SEM) was used to visualise the changes in the bacterial membrane. The holes in bacterial envelope and leakage of cellular contents were observed in SE micrographs after exposure to the EOs-LNCs and the doxycycline combination
    • …
    corecore