47 research outputs found

    Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: Evidence from oscillatory brain activity and power output

    Get PDF
    To test the hypothesis that transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) influences performance in a 20-min time-trial self-paced exercise and electroencephalographic (EEG) oscillatory brain activity in a group of trained male cyclists. There were no differences (F = 0.31, p > 0.05) in power output between the stimulation conditions: anodal (235W[95%CI 222–249 W]; cathodal (235W[95%CI 222–248 W] and sham (234W[95%CI 220–248 W]. Neither heart rate, sRPE nor EEG activity were affected by tDCS (all Ps > 0.05). tDCS over the left DLFC did not affect self-paced exercise performance in trained cyclists. Moreover, tDCS did not elicit any change on oscillatory brain activity either at baseline or during exercise. Our data suggest that the effects of tDCS on endurance performance should be taken with caution.This project was supported by grants from from the Spanish Ministerio de Economía, Industria y Competitividad-PSI2016-75956-P to D. S. and M.Z., a predoctoral grant from the Spanish Ministerio de Economía, Industria y Competitividad (BES-2014-069050) to L.F.C., and a Spanish “Ministerio de Educación, Cultura y Deporte” predoctoral grant (FPU14/06229) to D.H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The implementation and evaluation of a media literacy intervention about PAES use in sport science students

    Get PDF
    With respect to both competitive and amateur/fitness sports, media may strongly influence young people’s opinions and behaviors concerning the use of PAES (Performance and Appearance Enhancing Substances). The present investigation addressed this topic by focusing on sport sciences students’ beliefs concerning the possible role of media related to the implementation and evaluation of a PAES-focus media literacy intervention conducted with sport science students. This study relied on a sample of 521 students (attrition rate 10.3%) (45.1% female, mean age = 22.6, SD = 2.20), which provided baseline data on students’ levels of media literacy concerning the use of PAES (i.e. “descriptive sample”), and a sample of 248 students, who participated in and provided data on the media literacy intervention. This latter sample included a group of 128 students (44.5% female, mean age = 23.03, SD = 3.76) who actively participated in the intervention (i.e. “intervention group”), and a group of 120 students who did not (i.e. “control group”, 53.3% female, mean age = 22.25, SD = 2.47). All students filled out media literacy questionnaires targeting students’ awareness of media influence, their views about the realism of media content, their sense of confidence in dealing with media messages, and their positive attitudes toward PAES use. Analyses of questionnaire data showed that students are relatively aware of media influence on people’s views and behaviors with respect to PAES use. At the same time, students also believed that young people do not consider media as “realistic sources” of information; nonetheless, they also did not consider themselves entirely capable of dealing effectively with media messages. With respect to the intervention, students overall appreciated and greatly welcomed the educational program on media literacy, and the analyses of intervention data across intervention and control groups showed that key media literacy variables changed over time, attesting to the overall effectiveness of the intervention

    Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: Evidence from oscillatory brain activity and power output

    Get PDF
    Objectives: To test the hypothesis that transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) influences performance in a 20-min time-trial self-paced exercise and electroencephalographic (EEG) oscillatory brain activity in a group of trained male cyclists. Design: The study consisted of a pre-registered (https://osf.io/rf95j/), randomised, sham-controlled, single-blind, within-subject design experiment. Methods: 36 trained male cyclists, age 27 (6.8) years, weight 70.1 (9.5) Kg; VO2max: 54 (6.13) ml.min-1.kg-1, Maximal Power output: 4.77 (0.6) W/kg completed a 20-min time-trial self-paced exercise in three separate sessions, corresponding to three stimulation conditions: anodal, cathodal and sham. tDCS was administered before each test during 20-min at a current intensity of 2.0 mA. The anode electrode was placed over the DLPFC and the cathode in the contralateral shoulder. In each session, power output, heart rate, sRPE and EEG (at baseline and during exercise) was measured. Results: There were no differences (F = 0.31, p > 0.05) in power output between the stimulation conditions: anodal (235 W [95%CI 222–249 W]; cathodal (235 W [95%CI 222–248 W] and sham (234 W [95%CI 220–248 W]. Neither heart rate, sRPE nor EEG activity were affected by tDCS (all Ps > 0.05). Conclusion: tDCS over the left DLFC did not affect self-paced exercise performance in trained cyclists. Moreover, tDCS did not elicit any change on oscillatory brain activity either at baseline or during exercise. Our data suggest that the effects of tDCS on endurance performance should be taken with caution

    Piattaforme peer-to-peer nell’ambito della cura: cosa puĂČ insegnare l’esperienza del Regno Unito all’Italia.

    No full text
    L’esperienza di alcune piattaforme britanniche attive nel settore medico-sanitario sta dimostrando la capacità di sostenere lo scambio di informazioni tra pazienti e loro famiglie, ma anche di migliorare la qualità degli interventi
    corecore