21 research outputs found

    Summer warming explains widespread but not uniform greening in the Arctic tundra biome

    Get PDF
    Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades

    Palaeobiology of red and white blood cell-like structures, collagen and cholesterol in an ichthyosaur bone

    No full text
    © 2017 The Author(s). Carbonate concretions are known to contain well-preserved fossils and soft tissues. Recently, biomolecules (e.g. cholesterol) and molecular fossils (biomarkers) were also discovered in a 380 million-year-old concretion, revealing their importance in exceptional preservation of biosignatures. Here, we used a range of microanalytical techniques, biomarkers and compound specific isotope analyses to report the presence of red and white blood cell-like structures as well as platelet-like structures, collagen and cholesterol in an ichthyosaur bone encapsulated in a carbonate concretion from the Early Jurassic (~182.7 Ma). The red blood cell-like structures are four to five times smaller than those identified in modern organisms. Transmission electron microscopy (TEM) analysis revealed that the red blood cell-like structures are organic in composition. We propose that the small size of the blood cell-like structures results from an evolutionary adaptation to the prolonged low oxygen atmospheric levels prevailing during the 70 Ma when ichthyosaurs thrived. The d 13 C of the ichthyosaur bone cholesterol indicates that it largely derives from a higher level in the food chain and is consistent with a fish and cephalopod diet. The combined findings above demonstrate that carbonate concretions create isolated environments that promote exceptional preservation of fragile tissues and biomolecules

    Atmosphere oxygen cycling through the Proterozoic and Phanerozoic

    No full text

    Impact of a severe flood on large-scale contamination of arable soils by potentially toxic elements (Serbia)

    Get PDF
    Extreme flooding in May, 2014 affected the sub-catchments of six major rivers in Serbia. The goal of the study was to evaluate the contents of potentially toxic elements (PTEs) As, Cd, Pb, Cr, Ni, Cu, and Zn in flood sediments and arable soils within the affected sub-catchments using regulatory guidelines and BACKGROUND: levels. The sub-catchment of West Morava was selected to assess the degree of sediments and soils contamination and environmental risk [using the Pollution index (P-i), Enrichment factor, Geo-accumulation index, and Potential ecological risk index (PERI)] as well as to identify main PTEs sources by Principal component (PCA) and cluster analysis. Contents of Ni, Cr, As, Pb, and Cu above both guidelines and BACKGROUND: levels, and of Zn and Cd above BACKGROUND: levels were detected in the sediments and soils from all the sub-catchments. P-i indicted that about 95% of the soils and sediments were extremely polluted by Ni and about 65% slightly polluted by Cr, whereas about 90% were not polluted by As, Cd, Pb, Cu, or Zn. E-f indicated minor to moderate enrichment of the soils and sediments by Ni, and Cr. PCA differentiated a geogenic origin of Ni, Cr, As, and Pb, a mixed origin of Cd and Zn, and a predominantly anthropogenic origin of Cu. PERI of the soils and sediments suggested a low overall multi-element ecological risk. The ecological risk of the individual elements (E) for soils was Zn lt Cr lt Pb lt Ni lt Cu lt As lt Cd
    corecore